Chapter: 2 Vectors:

MCQs: [1 marks each]

1. Which of the sets give below may represent the magnitudes of three vectors adding to be zero? a. 2, 4, 8 b. 4, 8, 16 c. 1, 2, 1 d. 0.5, 1.2 2. A vector is not changed if: a. It is rotated through an arbitrary angle. b. It is multiplied by an arbitrary scalar c. It is cross multiplied by a unit vector d. It is shifted parallel to itself 3. If $\vec{P} \cdot \vec{Q} = |\vec{P}X\vec{Q}|$, the angle between \vec{P} and \vec{Q} is, b. π/2 a. 0 c. $\pi/4$ d. π 4. The resultant of \vec{A} and \vec{B} makes an angle α with \vec{A} and β with \vec{B} . a) $\alpha < \beta$ b. $\alpha < \beta$ if A<B c. $\alpha < \beta$ if A>B d. $\alpha < \beta$ if A=B 5. If $\vec{P} \cdot \vec{Q} = 0$, the angle between \vec{P} and \vec{Q} is a. 0 b. π/2 c. π/4 d. π 6. The resultant magnitude of two vector will be maximum, if angle between them is, a. 0 b. $\pi/2$ c. π/4 d. π 7. What is the angle between $\vec{P}X\vec{Q}$ and $\vec{Q}X\vec{P}$ a. 0 b. π/2 c. π/4 d. π 8. What is the angle between $\vec{P}X\vec{Q}$ and $\vec{P}+\vec{Q}$ a. 0 b. π/2 c. π/4 d. π 9. If \vec{A} , \vec{B} and \vec{C} have magnitude 6, 8 and 10 respectively, and $\vec{A} + \vec{B} = \vec{C}$, angle between A and B is, a. 0 b. 45 c. 90 d. 180 10. A force of $(3\hat{\imath} + 4\hat{\imath})N$ acts on a body and displaces it by $(3\hat{\imath} + 4\hat{\imath})M$. The work done by the forces is. a. 10 J b. 12 J c. 16 J d. 25 J 11. A force $(3\hat{\imath} + c\hat{\jmath} + 2\hat{k})N$ acting on a particle causes displacement of $(-4\hat{\imath} + 2\hat{\jmath} + 3\hat{k})m$ in its own direction. If work done is 6 J, then value of 'c' is, **a**. 0 b. 1 c. 6 d. 12 12. Three vectors satisfy the relation $\vec{A} \cdot \vec{B} = 0$ and $\vec{A} \cdot \vec{C} = 0$, then A is parallel to, a. $\vec{B}X\vec{C}$ b. *B*. *C* с. *Ĉ* d. \vec{B} 13. The value of \hat{i} . $(\hat{j}x\hat{k})$ is, d. \hat{k} a. 1 b. 0 c. ĵ 14. Two vectors $\vec{A} = 5\hat{\imath} + 7\hat{\jmath} - 3\hat{k}$ and $\vec{B} = 2\hat{\imath} + 2\hat{\jmath} - a\hat{k}$ are perpendicular to each other, then the value of a is. a. 12 b. -12 c. 8 d. -8 15. If $\vec{P} \cdot \vec{Q} = |\vec{P}X\vec{Q}|$, then $|\vec{P} + \vec{Q}|$, c. $\sqrt{A^2 + B^2 + 2AB}$ a. A + Bb. *A* − *B* d. zero 16. Two forces of magnitude F have resultant of same magnitude F. Angle between two forces is, 45^{0} b. 120⁰ c. 150° d. 180⁰ a.

SAQs {5 marks type questions}

1. a. A vector has both magnitude and direction does it mean that anything that has magnitude and direction is necessarily a vector? Explain with example.

b. If
$$\vec{A} = 4\hat{i} - \hat{j} + 3\hat{k}$$
 and $\vec{B} = 7\hat{i} + 5\hat{j} + \hat{k}$:

- Find scalar product (Dot product) of \vec{A} and \vec{B} i.
- Find vector product (Cross Product) of \vec{A} and \vec{B} ii.
- 2. a. If \vec{A} and \vec{B} are non-zero vectors, is it possible for $\vec{A} \cdot \vec{B}$ and $\vec{A} \times \vec{B}$ both to be zero? Explain. b. A disoriented physics professor drives 3.25 km north, then 4.75 km west and then 1.50 km south. Find the magnitude and direction of the resultant displacement.
- a. Resultant of two equal forces may have the magnitude equal to one of the forces. At what 3. angle between them the two equal forces this is possible. b. A rocket fires two engine simultaneously. One produces a thrust of 725N directly forward while the other gives a 513N thrust at 32.4° above the forward direction. Find the magnitude and direction of the resultant force that these engines exert on the rocket.
- 1. a. The magnitudes of two vectors are equal and the angle between them is θ . Show that their resultant divides angle θ equally.

b. A force vector is given as $\vec{F}_1 = (4\hat{\iota} + 3\hat{j})N$. Find the vector \vec{F}_2 of magnitude 10N which is perpendicular to \vec{F}_1 .

2. a. The velocity of 20 m/s has its x-component 12 m/s. What is its y-component? Find the angle at which the velocity is inclined with the x-axis.

b. Find the value of λ if the vectors $\vec{A} = 2\hat{i} + \hat{j} + \hat{k}$ and $\vec{B} = \hat{i} + 4\hat{j} + \lambda\hat{k}$ are mutually perpendicular.

c. Is a pressure and electric current are vector quantity?

- 6. a. If the cross product of two vectors vanishes, what can you say about their directions?
 - b. State triangle law of vector addition. Obtain the expression for the resultant of two vectors P and Q inclined at an angle θ .

7. a. The magnitudes of two vectors are equal and the angle between them is θ . Show that their resultant divides angle θ equally.

b. State parallelogram law of vector addition. Obtain the expression for the resultant of two vectors P and Q inclined at an angle θ .

8. a. Can the walk of a man be an example of resolution of vector?

b. A spelunker is surveying a cave. She follows a passage 180m straight west, then 210m in a direction 45° east of south, and 280m at 30° east of north. After the fourth unmeasured displacement, find herself back where she started. Find the magnitude and direction of fourth displacement.

9. a. What is the scalar product of a vector with itself? What about vector product?

b. At what angle the two forces $\overline{(P+Q)}$ and $\overline{(P-Q)}$ act, so that the resultant is $\sqrt{3P^2+Q^2}$ 10. a. Two vectors \vec{A} and \vec{B} are such that $\vec{A} - \vec{B} = \vec{C}$ and A - B = C. Find the angle between them.

b. If B is added to A, under what condition does the resultant vector have a magnitude equal

to A+B? Under what conditions is the resultant vector equal to zero?