## Chapter: 2 Vectors:

## MCQs: [1 marks each]

1. Which of the sets give below may represent the magnitudes of three vectors adding to be
zero? a. 2, 4, 8
b. $4,8,16$
c. $1,2,1$
d. 0.5 ,

1, 2
2. A vector is not changed if:
a. It is rotated through an arbitrary angle.
b. It is multiplied by an arbitrary scalar
c. It is cross multiplied by a unit vector
d. It is shifted parallel to itself
3. If $\vec{P} \cdot \vec{Q}=|\vec{P} X \vec{Q}|$, the angle between $\vec{P}$ and $\vec{Q}$ is,
a. 0
b. $\pi / 2$
c. $\pi / 4$
d. $\pi$
4. The resultant of $\vec{A}$ and $\vec{B}$ makes an angle $\alpha$ with $\vec{A}$ and $\beta$ with $\vec{B}$.

$$
\begin{array}{lll}
\text { a) } \begin{array}{ll}
\alpha<\beta & \text { b. } \alpha<\beta \text { if } \mathrm{A}<\mathrm{B} \\
\mathrm{~A}=\mathrm{B} & \text { c. } \alpha<\beta \text { if } \mathrm{A}>\mathrm{B} \quad \text { d. }
\end{array} \alpha<\beta \quad \text { if }
\end{array}
$$

5. If $\vec{P} \cdot \vec{Q}=0$, the angle between $\vec{P}$ and $\vec{Q}$ is
a. 0
b. $\pi / 2$
c. $\pi / 4$
d. $\pi$
6. The resultant magnitude of two vector will be maximum, if angle between them is,
a. 0
b. $\pi / 2$
c. $\pi / 4$
d. $\pi$
7. What is the angle between $\vec{P} X \vec{Q}$ and $\vec{Q} X \vec{P}$
a. 0
b. $\pi / 2$
c. $\pi / 4$
d. $\pi$
8. What is the angle between $\vec{P} X \vec{Q}$ and $\vec{P}+\vec{Q}$
a. 0
b. $\pi / 2$
c. $\pi / 4$
d. $\pi$
9. If $\vec{A}, \vec{B}$ and $\vec{C}$ have magnitude 6,8 and 10 respectively, and $\vec{A}+\vec{B}=\vec{C}$, angle between A and $B$ is,
a. 0
b. 45
c. 90
d. 180
10. A force of $(3 \hat{\imath}+4 \hat{\jmath}) N$ acts on a body and displaces it by $(3 \hat{\imath}+4 \hat{\jmath}) m$. The work done by the forces is,
a. 10 J
b. 12 J
c. 16 J
d. 25 J
11. A force $(3 \hat{\imath}+c \hat{\jmath}+2 \hat{k}) N$ acting on a particle causes displacement of $(-4 \hat{\imath}+2 \hat{\jmath}+3 \hat{k}) m$ in its own direction. If work done is 6 J , then value of ' c ' is,
a. 0
b. 1
c. 6
d. 12
12. Three vectors satisfy the relation $\vec{A} \cdot \vec{B}=0$ and $\vec{A} \cdot \vec{C}=0$, then A is parallel to,
a. $\vec{B} X \vec{C}$
b. $\vec{B} \cdot \vec{C}$
c. $\vec{C}$
d. $\vec{B}$
13. The value of $\hat{\imath} .(\hat{\jmath} \times \hat{k})$ is,
a. 1
b. 0
c. $\hat{\jmath}$
d. $\hat{k}$
14. Two vectors $\vec{A}=5 \hat{\imath}+7 \hat{\jmath}-3 \hat{k}$ and $\vec{B}=2 \hat{\imath}+2 \hat{\jmath}-a \hat{k}$ are perpendicular to each other, then the value of a is,
a. 12
b. -12
c. 8
d. -8
15. If $\vec{P} \cdot \vec{Q}=|\vec{P} X \vec{Q}|$, then $|\vec{P}+\vec{Q}|$,
a. $\quad A+B$
b. $A-B$
c. $\sqrt{A^{2}+B^{2}+2 A B}$
d. zero
16. Two forces of magnitude $F$ have resultant of same magnitude $F$. Angle between two forces is,
a. $45^{0}$
b. $120^{0}$
c. $150^{0}$
d. $180^{\circ}$

## SAQs $\{5$ marks type questions $\}$

1. a. A vector has both magnitude and direction does it mean that anything that has magnitude and direction is necessarily a vector? Explain with example.
b. If $\vec{A}=4 \hat{\imath}-\hat{\jmath}+3 \hat{k}$ and $\vec{B}=7 \hat{\imath}+5 \hat{\jmath}+\hat{k}$ :
i. Find scalar product (Dot product) of $\vec{A}$ and $\vec{B}$
ii. Find vector product (Cross Product) of $\vec{A}$ and $\vec{B}$
2. a. If $\vec{A}$ and $\vec{B}$ are non-zero vectors, is it possible for $\vec{A} \cdot \vec{B}$ and $\vec{A} X \vec{B}$ both to be zero? Explain. b. A disoriented physics professor drives 3.25 km north, then 4.75 km west and then 1.50 km south. Find the magnitude and direction of the resultant displacement.
3. a. Resultant of two equal forces may have the magnitude equal to one of the forces. At what angle between them the two equal forces this is possible.
b. A rocket fires two engine simultaneously. One produces a thrust of 725 N directly forward while the other gives a 513 N thrust at $32.4^{0}$ above the forward direction. Find the magnitude and direction of the resultant force that these engines exert on the rocket.
4. a. The magnitudes of two vectors are equal and the angle between them is $\theta$. Show that their resultant divides angle $\theta$ equally.
b. A force vector is given as $\vec{F}_{1}=(4 \hat{\imath}+3 \hat{\jmath}) N$. Find the vector $\vec{F}_{2}$ of magnitude 10 N which is perpendicular to $\vec{F}_{1}$.
5. a. The velocity of $20 \mathrm{~m} / \mathrm{s}$ has its x -component $12 \mathrm{~m} / \mathrm{s}$. What is its y-component? Find the angle at which the velocity is inclined with the x -axis.
b. Find the value of $\lambda$ if the vectors $\vec{A}=2 \hat{\imath}+\hat{\jmath}+\hat{k}$ and $\vec{B}=\hat{\imath}+4 \hat{\jmath}+\lambda \hat{k}$ are mutually perpendicular.
c. Is a pressure and electric current are vector quantity?
6. a. If the cross product of two vectors vanishes, what can you say about their directions?
b. State triangle law of vector addition. Obtain the expression for the resultant of two vectors P and Q inclined at an angle $\theta$.
7. a. The magnitudes of two vectors are equal and the angle between them is $\theta$. Show that their resultant divides angle $\theta$ equally.
b. State parallelogram law of vector addition. Obtain the expression for the resultant of two vectors P and Q inclined at an angle $\theta$.
8. a. Can the walk of a man be an example of resolution of vector?
b. A spelunker is surveying a cave. She follows a passage 180 m straight west, then 210 m in a direction $45^{\circ}$ east of south, and 280 m at $30^{\circ}$ east of north. After the fourth unmeasured displacement, find herself back where she started. Find the magnitude and direction of fourth displacement.
9. a. What is the scalar product of a vector with itself? What about vector product?
b. At what angle the two forces $\overrightarrow{(P+Q)}$ and $\overrightarrow{(P-Q)}$ act, so that the resultant is $\sqrt{3 P^{2}+Q^{2}}$
10. a. Two vectors $\vec{A}$ and $\vec{B}$ are such that $\vec{A}-\vec{B}=\vec{C}$ and $A-B=C$. Find the angle between them.
b. If B is added to A , under what condition does the resultant vector have a magnitude equal
to $A+B$ ? Under what conditions is the resultant vector equal to zero?
