Working formula:

• To find velocity of sound at laboratory temperature (v_t) :

$$v_t = 2f(l_2 - l_1)$$

• To find velocity at NTP (v_o) :

$$v_o = \sqrt{\frac{T_o}{T_t}} \times v_t$$

PROCEDURE:

- 1. Pour water into the water reservoir so that it fills the resonance pipe completely (be sure that the resonance apparatus is perfectly vertical).
- 2. Take a tuning fork of known frequency.
- 3. Strike the tuning fork against a rubber and hold the vibrating tuning fork horizontally above (slightly above) the resonance pipe.
- 4. Repeat the step 3 by adjusting (lowering) the water level till loud sound is heard. This is the condition of first resonance. Note the resonating length of air column (first resonating length l_1).
- 5. Now lower the water level and obtain the second resonance (keeping the vibrating tuning fork above the pipe). Note the resonating length of air column (second resonating length l_2).
- 6. Repeat the step 4 and 5 for three other tuning forks of different known frequencies.
- 7. Use appropriate formula to find the velocity of sound in air at laboratory temperature.
- 8. Use appropriate formula to find the velocity of sound at NTP.

OBSERVATION:

Laboratory temperature, $t = \dots \circ C$ $\therefore T_t = (t + 273) K$

$$I_t = (t + 273) K$$
$$= \dots K$$

Least count of meter scale = \dots \dots

Observation table:

		Resonating lengths		Velocity of sound at	
S.N.	Frequency of tuning fork <i>f</i> (<i>Hz</i>)	First resonating length <i>l</i> ₁ (<i>m</i>)	Second resonating length l ₂ (m)	laboratory temperature v_t (m/s) $v_t = 2f(l_2 - l_1)$	Mean $v_t (m/s)$
1.					
2.					
3.					
4.					

CALCULATIONS:

From above table, the velocity of sound at $\dots o^{c} C = \dots \dots m/s$ Now velocity of sound at NTP is:

$$v_o = \sqrt{\frac{T_o}{T_t}} \times v_t$$