MCQs:

1. When a wave is reflected from a denser medium, the change in phase is:		
a. 0 b. π	c. 2 <i>π</i>	d. 3π
2. A stationary wave is represented by: $y = A \sin(100t) \cos(0.01x)$ where A & y are in millimeters, t in		
sec and x in meter. The velocity of v		
a. $10^2 ms^{-1}$ b. $10^3 ms^{-1}$		
3. The equation of a stationary wave is $y = 5 \sin \frac{\pi x}{3} \cos 40\pi t$, where x and y in cm and t is second. Then		
the separation between two consecutive node is:		
a. 12 <i>cm</i> b. 6 <i>cm</i>	c. 3 <i>cm</i>	d. 1.5 <i>cm</i>
4. The displacement of an elastic wave is given by the function $y = 3\sin \omega t + 4\cos \omega t$, where y is in cm		
and t is in sec . The resultant amp	litude is	
a. 3 <i>cm</i> b 4 <i>cm</i>	c. 5 cm	d. 7 <i>cm</i>
5. Two waves produced displacement	at a point given by: $y_1 = a s$	in $\omega t \& y_2 = a \sin(wt + \pi/2)$. The
resultant amplitude is:	_	
a. 0 b. 2 <i>a</i>	c. $\sqrt{2}a$	d. $a/\sqrt{2}$
6. In stationary wave the particle veloc	-	
		zero d. infinite
7. The amplitude of superposition of tw		
a. 0 b. 5	c. $5\sqrt{2}$	d. 10
8. A standing wave is shown in the figure. The number of nodes and antinodes are		
a. 4 nodes 3 antinodes	b. 3 nodes, 4 antinodes	$\leftarrow \times \rightarrow$
c. 3 nodes, 3 antinodes d. 4 nodes, 4 antinodes 10. 9. An open organ pipe and a close organ pipe resonate with same tuning fork.		
The ratio of the lengths of open pipe to close pipe remains in the ratio.		
a. 2:1 b. 1:2		4:1 AN AN AN AN AN AN AN A
11. The figure alongside shows three different modes of vibrations in a closed		
organ pipe. The ratio of frequencies in figure a, b, and c respectively is:		
a.1: 2: 3	b. 1:3:5	AN N
c.3: 2: 1	d. 5: 3: 1	
12. In resonating air column, the waves	•	fig:a $fig:b$ $fig:c$
, ,	b. transverse progre	
c. stationary transverse waves13. An empty vessel is filled with water	d. longitudinal prog	gressive
a. increases b. decreases	c. unchanged	d. none of these
14. The end correction of resonance tul		
a. 1.65cm b. 2 cm	c. 3.3 cm	d. 6.6 <i>cm</i>
15. When the prongs of the tuning fork	are cut, its frequency	
a. decreases	b. increases	
c. remains unchanged	d. may increase or	
16. When one of the prongs of the tuning fork is broken and the tuning fork is vibrated, its vibrations a. Are maintained equally well b. Are maintained better		
c. Initially intensity increases but it		octici
d. Initially intensity decreases but its vibrations are maintained for a longer time		
17. The fundamental frequency of a closed organ pipe is f . If its length is doubled and radius is halved, its		
frequency will become nearly		
a. $f/_2$ b. $f/_3$	c. 2 <i>f</i>	d. <i>f</i>
18. What is the effect of increase in ter		-
a. Increases b. Decreases c. erratic change d. no effect		