D. $\left[M^{0} L^{1} T^{-1}\right]$
19. Van der Waal's equation of state is: $\left(\mathrm{P}+\frac{a}{V^{2}}\right)(V-b)=R T$ where P is pressure, V is volume, T is temperature and R is universal gas constant. Find the dimensions of Vander Waal's constants a and b. What is the dimension of b :
A. $\left[M^{0} L^{2} T^{-1}\right]$
B. $\left[M^{0} L^{3} T^{0}\right]$
C. $\left[M^{1} L^{2} T^{0}\right]$
D. $\left[M^{1} L^{2} T^{-1}\right]$
20. The force F is given in terms of time (t) and the displacement (x) by the equation: $F=A \cos B x+C \sin D t$. The dimension of $\frac{D}{B}$ is:
A. $\left[M^{0} L^{1} T^{1}\right]$
B. $\left[M^{0} L^{1} T^{-1}\right]$
C. $\left[M^{0} L^{-1} T^{1}\right]$
D. $\left[M^{0} L^{0} T^{0}\right]$
21. The percentage error in measurement of mass and speed are 2% and speed are 3% respectively. What will be the error in the measurement of kinetic energy?
A. 2%
B. 6%
C. 8%
D. 18%
22. The error in measurement of radius of the sphere is 2%, then what will be the possible error in measurement of volume?
A. 2%
B. 4%
C. 6%
D. 8%
23. If the change in KE is 4%, then momentum changes by:
A. 1%
B. 2%
C. 6%
D. 8%

