Dimensional analysis

Dimension:

Dimension of a physical quantity is the numbers to be raised over fundamental quantities involved in the physical quantity.

For example: $velocity = \frac{displacement}{time} = \frac{length}{time} = \frac{L^1}{T^1} = [M^0 L^1 T^{-1}]$

Thus, the dimension of velocity is 0 in mass, 1 in length and -1 in time.

Fundamental units and their dimensions

S N	Physical Quantity	SI unit	Dimension	
1	Length	Meter (m)	[L]	
2	Mass	Kilogram (kg)	[M]	
3	Time	Second (s)	[T]	
4	Temperature	Kelvin (K)	[K] or [θ]	
5	Electric Current	Ampere (A)	[A] or [I]	
6	Luminous Intensity	Candela (cd)	[Cd]	
7	Amount of Substance	Mole (mol)	[N] or [mol]	

Dimensional formula:

A relation that relates a physical quantity with fundamental quantities involved in it is called as dimensional formula.

Dimensional formula is expressed in square bracket.

For example: The dimensional formula of velocity is $[M^0L^1T^{-1}]$.

Dimensional equation:

An equation which relates a physical quantity with its dimensional formula is called as dimensional equation.

'OR'

An equation (relation) written in dimensional form is called as dimensional equation.

For example: For the relation, F = ma,

the dimensional equation is:

 $[\mathbf{F}] = [M^1 L^1 T^{-2}]$

Dimension of some derived quantities:

1.
$$Area(A) = l^2 = [L^2] = [M^0 L^2 T^0]$$

2. Volume
$$(V) = l^3 = [L^3] = [M^0 L^3 T^0]$$

3. **Density**
$$(\rho) = \frac{mass(M)}{volume(V)} = \frac{[M]}{[L^3]} = [M^1 L^{-3}] = [M L^{-3} T^0]$$

4. velocity
$$(v) = \frac{length(l)}{time(T)} = \frac{[L]}{[T]} = [LT^{-1}] = [M^0 L T^{-1}]$$

5. Acceleration (a) =
$$\frac{\text{change in velocity}(\Delta v)}{\text{time }(t)} = \frac{[LT^{-1}]}{[T]} = [LT^{-2}] = [M^0 LT^{-2}]$$

6.
$$Force(F) = mass(m) \times acceleration(a) = [M] \times [M^0 L T^{-2}] = [M L T^{-2}]$$

7. Work (W) = force (F) × displacement(s) =
$$[MLT^{-2}] \times [L] = [ML^2T^{-2}] = Dimension of Energy$$

[All different forms of energy have the same dimensions as those of work]

9. **Pressure** (**P**) =
$$\frac{force(F)}{area(A)} = \frac{[MLT^{-2}]}{[L^2]} = [ML^{-1}T^{-2}]$$