Table for thickness of test plate:

SN	Initial circular	Number	Final circular	Main	Additional	Circular	Thickness
	scale reading	of	scale reading	scale	circular scale	scale	of plate
	(On test plate)	complete	(On base plate)	reading	reading	reading	
	x	rotations	y		A = x - y		= M + C
	(mm)	n	(mm)	$M = n \times P$	Or	$C = A \times LC$	
				(mm)	A = x - y + 100	(mm)	(mm)
1.							
2.							
3.							
4.							
5.							
6.							

 \therefore The mean thickness of the given test plate is: $t = \dots \dots mm$.

=*cm*

From graph, the area of the given test plate is:

CALCULATIONS

The volume of the given test glass plate is:

$$V = Area \times thickness$$

$$V = \dots$$

or
$$V - cm^3$$

And

The density of the given plate is:

$$\rho = \frac{m}{V}$$

$$\rho = \dots$$

or,
$$\rho = \dots \dots gram \ cm^{-3}$$

PERCENTAGE ERROR

For density of glass:

Standard value,
$$SV = 2.5 \ gram \ cm^{-3}$$

Observed value,
$$OV = \dots gram \ cm^{-3}$$