Experiment No.: Date:

TO COMPARE THE EMF'S OF TWO CELLS BY USING A POTENTIOMETER

APPARATUS REQUIRED:

1. Potentiometer 2. DC Power Supply (2V-4V) 3. Rheostat

4. Connecting wires 5. Test cells (2 cells) 6. Three-way switch

7. Galvanometer 8. Jockey

THEORY:

The potentiometer is an instrument used to measure the unknown voltage by comparing it with the known voltage. It can be used:

1. To determine the emf of a cell.

2. To determine the internal resistance of the given cell.

3. To compare the emf of different cells.

[In measuring the emf of a cell, potentiometer is preferred over voltmeter.]

Construction of potentiometer:

It consists of a long resistance wire (generally made of constantan or manganin) that is stretched on a wooden board. Usually, the potentiometer wire consists of 10 segments of uniform cross-section each of length 1m stretched on the wooden board. The wires are connected serially on the board by using metal strips.

Principle of potentiometer:

"When a constant current is passed through a wire (conductor) of uniform cross-sectional area, the potential drop across any segment of the wire is directly proportional to the length of the segment."

i.e.
$$V \propto l$$

or,
$$V = K l$$

Here, $K = \frac{V}{l}$ is called as potential gradient of potentiometer.

Emf of a cell (E):

The amount of work done in moving a unit positive charge from lower potential to higher potential inside a cell in an open circuit is called as its emf.

The Potential difference (voltage) across a cell in an open circuit is called as the emf of the cell.

To compare the emfs of two cells:

The experimental arrangement to compare emfs of two cells is shown in figure.

Here, we have to compare the emfs of two test cells having emf E_1 and E_2 .

During experiment, we slide a jockey over the potentiometer wire in order to obtain null deflection in the galvanometer. (Like meter bridge, the potentiometer also works under balanced condition).

Step 1: When K_1 is close and K_2 is open:

Ohm's law:
$$V = IR$$

$$V = I \frac{\rho l}{A}$$

$$V = \frac{I\rho}{A} l$$

$$V = K l$$

$$K = \frac{V}{l} \quad \text{OR} \quad K = \frac{I\rho}{A}$$

K is called as **potential gradient.** Unit of potential gradient: V/m

(Behaves as Least Count potentiometer)

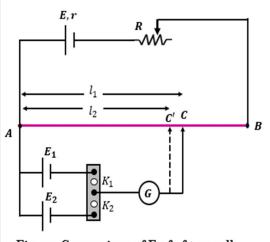


Figure: Comparison of Emf of two cells $(E_1: E_2)$ using Potentiometer