- 1. Calculate the unknown resistance by using appropriate formula.
- 2. Now, exchange the position of unknown and known resistance and again repeat the steps 2, 3, 4, 5 and 6.

To find resistivity of wire

- 3. Find the length (L) and diameter (d) of the wire using meter scale and screw gauge respectively.
- 4. Calculate the resistivity of wire using appropriate formula [after knowing the value of X.]

OBSERVATIONS:

Least count of meter scale $= \dots \dots \dots$

Least count of screw gauge =

Instrumental error in screw gauge =

Length of given wire, $L = \dots m$

Diameter of given wire, $d = \dots m$

Observation Table:

• To find unknown resistance (of the given wire):

S. N.	Known resistance (R)		Balanced length (from zero end)	100 - l (cm)	Unknown resistance (X in left gap)	Unknown resistance (X in right gap)	Mean <i>X</i>
	Right gap	Left gap	(cm)	(ст)	$X = \frac{l}{100 - l} \times R$	$X = \frac{100 - l}{l} \times R$	(Ω)
1.	1Ω	-				-	
2.	2Ω	-				-	
3.	3Ω	-				-	
4.	-	1Ω			-		
5.	-	2Ω			-		
6.	-	3Ω			-		

CALCULATIONS:

From above table, the mean resistance of the given wire, $X = \dots \Omega$.

The resistivity of the wire is:

$$\rho = \frac{\pi \, d^2}{4 \, L} X$$

or,
$$\rho = \dots \dots$$

PERCENTAGE ERROR:

Standard value of resistivity of given wire, $\rho_S = \dots$ (being wire)

Observed value of resistivity of given wire, $\rho_o = \dots \dots \dots$