Observation table: | | Velocity of | Resonating lengths | | Frequency of | | End | | |------|-------------|--------------------|------------|--------------------|------|--------------|------------------| | | sound at | First | Second | tuning fork | Mean | correction | | | S.N. | laboratory | resonating | resonating | f(Hz) | f | e (m) | Mean | | | temperature | length | length | $f = \frac{v_t}{}$ | (Hz) | $l_2 - 3l_1$ | \boldsymbol{e} | | | $v_t(m/s)$ | $l_1(m)$ | $l_2(m)$ | $2(l_2-l_1)$ | | $e - {2}$ | (m) | | | | | | | | | | | 1. | | | | | | | | | 2. | | | | | | | | | 3. | | | | | | | | | 4. | | | | | | | | ## **CALCULATIONS:** From above table, Frequency of tuning fork, $f = \dots Hz$ End correction of tube, $e = \dots m$ ## PERCENTAGE ERROR: • Frequency of tuning fork: Standard value of frequency of tuning fork, $f_s = \dots Hz$ Observed value of frequency of tuning fork, $f_0 = \dots Hz$ • End correction of tube: Standard value of end correction of tube, $e_s = 0.3 d = \dots m$ Observed value of end correction of tube, $e_o = \dots m$ ## **RESULT:** The frequency of tuning fork has been found to be with error.....and the end correction of the given tube has been found to be with error.