Relation between Phase difference and path difference:

For path difference λ, \quad phase difference $=2 \pi$
For path difference $1, \quad$ phase difference $=\frac{2 \pi}{\lambda}$
For path difference x, \quad phase difference $=\frac{2 \pi}{\lambda} x$

Hence, p hase difference $=\frac{2 \pi}{\lambda} \times$ path difference

NB:

Phase difference between two different points (particles) at same time: $\Delta \phi=k \Delta x \quad ; \Delta x=x_{2}-x_{1}$ Phase difference of same point (particle) at different time: $\Delta \phi=w \Delta t \quad ; \Delta t=t_{2}-t_{1}$

1. The distance between two points differing in phase by 60° on a wave having wave velocity $360 \mathrm{~m} / \mathrm{s}$ and frequency 500 Hz is:
a) 0.72 m
b) 0.36 m
c) 0.18 m
d) 0.12 m
2. A wave of frequency 500 Hz is travelling at a speed of $350 \mathrm{~m} / \mathrm{s}$. By how much the phase of a particle change in 10^{-3} seconds?
a) π
b) 180°
c) only (a)
d) both (a) and (b)

Progressive wave (Plane progressive wave)

A wave that moves forward with constant amplitude and constant frequency is called as progressive wave.
(Also with constant wavelength, constant velocity......)
As a progressive wave propagates through a medium, each molecule of the medium oscillates with same amplitude but different phases.

Consider a plane progressive wave travelling in a
displacement

We consider another particle at point \boldsymbol{P}, along the direction of propagation of wave at distance \boldsymbol{x} (path difference) from point \boldsymbol{O}. As the disturbance at point \boldsymbol{P} reaches later than at point \boldsymbol{O}, the equation of motion of particle at point \boldsymbol{P} with respect to that at point \boldsymbol{O} is:

$$
y=a \sin (\omega t-\phi) \ldots \ldots \ldots(2) \quad ; \phi=p h a s e \text { difference between two points }
$$

Equation (2) indicates the equation of plane progressive wave travelling along positive X -axis.
We have relation between path difference and phase difference as:

$$
\text { phase difference }=\frac{2 \pi}{\lambda} \times \text { path difference } \quad ; \text { where, } \frac{2 \pi}{\lambda}=k(\text { wave number })
$$

