simplifiednote.com

Fluids

	Fluid statics
1. A body weighs 60grams in air and 40 gram	n in water. The specific gravity of the body is:
a. 0.5 b. 1.5	c 3 d. 5
2. A body weighs 160 gm in air, 130 gm in w	ater and 136 gm in oil. The specific gravity of oil is
a. 0.8 b. 1.3	c. 1.6 d. 3.2
3. A block of wood floats in the water with $\frac{2}{3}$ r	d of its volume submerged. The density of the wood will be
a. 0.33 gm/cm^3 b. 0.66 gm/cm^3 c. 0.56	$5 \text{ gm/cm}^3 \text{ d. 1 gm/cm}^3$
4. The common hydrometer reads 1.6 specific	gravity. The mark 1.5 is
a. upwards b. same at that place c. do	ownwards d. depends on the hydrometer
5. A wooden block of 120 kg floats in water a	nd its density is 600 kg/m^3 . What mass can be put on the block
to make it just sink?	
a. 20 kg b. 40 kg	c. 60 kg d. 80 kg
6. A balloon has a volume of 1000 m ³ . It is fil	lled with hydrogen gas of density 0.09 Kg/m ³ . If the density of
air is 1.29 kg/m ³ , it can lift a total weight o	f
a. 400 kg b. 600 kg	c. 1000 kg d. 1200 kg
7. A boat having a length of 3 m and a breadt	th of 2 m is floating on a lake. The boat sinks by 1 cm when a
man gets on it. The mass of the man is	
a. 15 kg b. 60 kg	c. 72kg d. 90 kg
8. When an air bubble rises from the bottom	of a lake to the surface, its radius doubles (under isothermal
condition). The atmospheric pressure is equ	ual to that of a column of water at the height of h. The depth of
the lake is:	
a. h b. 3h	c. 5h d. 7h
9. The value of g at a place decrease by 2% The	he barometric height of the mercury
a. increases by 2%	b. decreases by 2%
c remains unchanged	d. sometimes increases and sometimes decreases
10. A stone suspended on a string falls. The ten	ision in the string will be
10. A stone suspended on a string falls. The ten a. greater than its weight	usion in the string will be b. smaller than its weight but not zero
10. A stone suspended on a string falls. The tena. greater than its weightc. zero	nsion in the string will be b. smaller than its weight but not zero d. cannot be predicted
 10. A stone suspended on a string falls. The ten a. greater than its weight c. zero A. A body floats in a liquid contained in 	nsion in the string will be b. smaller than its weight but not zero d. cannot be predicted a a beaker. The whole system falls freely under gravity. The
 10. A stone suspended on a string falls. The ten a. greater than its weight c. zero A. A body floats in a liquid contained in upthrust on the body due to liquid is 	 asion in the string will be b. smaller than its weight but not zero d. cannot be predicted a beaker. The whole system falls freely under gravity. The
 10. A stone suspended on a string falls. The ten a. greater than its weight c. zero A. A body floats in a liquid contained ir upthrust on the body due to liquid is a. Zero 	 asion in the string will be b. smaller than its weight but not zero d. cannot be predicted a beaker. The whole system falls freely under gravity. The b. Equal to weight of displaced liquid
 10. A stone suspended on a string falls. The ten a. greater than its weight c. zero A. A body floats in a liquid contained ir upthrust on the body due to liquid is a. Zero c. Equal to weight of body in air 	 asion in the string will be b. smaller than its weight but not zero d. cannot be predicted a beaker. The whole system falls freely under gravity. The b. Equal to weight of displaced liquid d. Equal to the weight of immersed portion of the body
 10. A stone suspended on a string falls. The ten a. greater than its weight c. zero A. A body floats in a liquid contained ir upthrust on the body due to liquid is a. Zero c. Equal to weight of body in air B. Two solids A and B float in water. A f 	 asion in the string will be b. smaller than its weight but not zero d. cannot be predicted a beaker. The whole system falls freely under gravity. The b. Equal to weight of displaced liquid d. Equal to the weight of immersed portion of the body loats with 2/3 rd of its volume immersed and B floats with 1/2
 10. A stone suspended on a string falls. The ten a. greater than its weight c. zero A. A body floats in a liquid contained ir upthrust on the body due to liquid is a. Zero c. Equal to weight of body in air B. Two solids A and B float in water. A f th of its volume immersed. The ratio of 	 asion in the string will be b. smaller than its weight but not zero d. cannot be predicted a beaker. The whole system falls freely under gravity. The b. Equal to weight of displaced liquid d. Equal to the weight of immersed portion of the body loats with 2/3 rd of its volume immersed and B floats with 1/2 f density of A and B is:
 10. A stone suspended on a string falls. The ten a. greater than its weight c. zero A. A body floats in a liquid contained ir upthrust on the body due to liquid is a. Zero c. Equal to weight of body in air B. Two solids A and B float in water. A f th of its volume immersed. The ratio of a. 4:3 b. 3:4 	 asion in the string will be b. smaller than its weight but not zero d. cannot be predicted a beaker. The whole system falls freely under gravity. The b. Equal to weight of displaced liquid d. Equal to the weight of immersed portion of the body loats with 2/3 rd of its volume immersed and B floats with 1/2 f density of A and B is: c. 1:3 d. 3:1
 10. A stone suspended on a string falls. The ten a. greater than its weight c. zero A. A body floats in a liquid contained ir upthrust on the body due to liquid is a. Zero c. Equal to weight of body in air B. Two solids A and B float in water. A f th of its volume immersed. The ratio of a. 4:3 b. 3:4 C. The weight of 1Kg block of iron having 	asion in the string will be b. smaller than its weight but not zero d. cannot be predicted a beaker. The whole system falls freely under gravity. The b. Equal to weight of displaced liquid d. Equal to the weight of immersed portion of the body loats with 2/3 rd of its volume immersed and B floats with 1/2 f density of A and B is: c. 1:3 d. 3:1 g volume $1.3 \times 10^{-4}m^3$ is immersed in water measured by the
 10. A stone suspended on a string falls. The ten a. greater than its weight c. zero A. A body floats in a liquid contained ir upthrust on the body due to liquid is a. Zero c. Equal to weight of body in air B. Two solids A and B float in water. A f th of its volume immersed. The ratio of a. 4:3 b. 3:4 C. The weight of 1Kg block of iron having spring balance is 	asion in the string will be b. smaller than its weight but not zero d. cannot be predicted a beaker. The whole system falls freely under gravity. The b. Equal to weight of displaced liquid d. Equal to the weight of immersed portion of the body loats with 2/3 rd of its volume immersed and B floats with 1/2 f density of A and B is: c. 1:3 d. 3:1 g volume $1.3 \times 10^{-4}m^3$ is immersed in water measured by the
 10. A stone suspended on a string falls. The ten a. greater than its weight c. zero A. A body floats in a liquid contained ir upthrust on the body due to liquid is a. Zero c. Equal to weight of body in air B. Two solids A and B float in water. A f th of its volume immersed. The ratio of a. 4:3 b. 3:4 C. The weight of 1Kg block of iron having spring balance is a. 6N b. 6.7N 	asion in the string will be b. smaller than its weight but not zero d. cannot be predicted a beaker. The whole system falls freely under gravity. The b. Equal to weight of displaced liquid d. Equal to the weight of immersed portion of the body loats with 2/3 rd of its volume immersed and B floats with 1/2 f density of A and B is: c. 1:3 d. 3:1 g volume $1.3 \times 10^{-4} m^3$ is immersed in water measured by the c. 8.7N d. 9.7N
 10. A stone suspended on a string falls. The ten a. greater than its weight c. zero A. A body floats in a liquid contained ir upthrust on the body due to liquid is a. Zero c. Equal to weight of body in air B. Two solids A and B float in water. A f th of its volume immersed. The ratio of a. 4:3 b. 3:4 C. The weight of 1Kg block of iron having spring balance is a. 6N b. 6.7N D. Buovancy depends on: 	asion in the string will be b. smaller than its weight but not zero d. cannot be predicted n a beaker. The whole system falls freely under gravity. The b. Equal to weight of displaced liquid d. Equal to the weight of immersed portion of the body loats with 2/3 rd of its volume immersed and B floats with 1/2 f density of A and B is: c. 1:3 d. 3:1 g volume $1.3 \times 10^{-4}m^3$ is immersed in water measured by the c. 8.7N d. 9.7N
 10. A stone suspended on a string falls. The ten a. greater than its weight c. zero A. A body floats in a liquid contained ir upthrust on the body due to liquid is a. Zero c. Equal to weight of body in air B. Two solids A and B float in water. A f th of its volume immersed. The ratio of a. 4:3 b. 3:4 C. The weight of 1Kg block of iron having spring balance is a. 6N b. 6.7N D. Buoyancy depends on: a. shape of the body b. depth 	asion in the string will be b. smaller than its weight but not zero d. cannot be predicted a beaker. The whole system falls freely under gravity. The b. Equal to weight of displaced liquid d. Equal to the weight of immersed portion of the body loats with 2/3 rd of its volume immersed and B floats with 1/2 f density of A and B is: c. 1:3 d. 3:1 g volume $1.3 \times 10^{-4}m^3$ is immersed in water measured by the c. 8.7N d. 9.7N c. mass of the body d. mass of the liquid displaced
 10. A stone suspended on a string falls. The ten a. greater than its weight c. zero A. A body floats in a liquid contained ir upthrust on the body due to liquid is a. Zero c. Equal to weight of body in air B. Two solids A and B float in water. A f th of its volume immersed. The ratio of a. 4:3 b. 3:4 C. The weight of 1Kg block of iron having spring balance is a. 6N b. 6.7N D. Buoyancy depends on: a. shape of the body b. depth 	asion in the string will be b. smaller than its weight but not zero d. cannot be predicted a beaker. The whole system falls freely under gravity. The b. Equal to weight of displaced liquid d. Equal to the weight of immersed portion of the body loats with 2/3 rd of its volume immersed and B floats with 1/2 f density of A and B is: c. 1:3 d. 3:1 g volume $1.3 \times 10^{-4}m^3$ is immersed in water measured by the c. 8.7N d. 9.7N c. mass of the body d. mass of the liquid displaced a volume $1.3 \times 10^{-4}m^3$ immersed in water, as measured by a
 10. A stone suspended on a string falls. The ten a. greater than its weight c. zero A. A body floats in a liquid contained ir upthrust on the body due to liquid is a. Zero c. Equal to weight of body in air B. Two solids A and B float in water. A f th of its volume immersed. The ratio of a. 4:3 b. 3:4 C. The weight of 1Kg block of iron having spring balance is a. 6N b. 6.7N D. Buoyancy depends on: a. shape of the body b. depth E. The weight of 1Kg block iron having spring balance is 	asion in the string will be b. smaller than its weight but not zero d. cannot be predicted n a beaker. The whole system falls freely under gravity. The b. Equal to weight of displaced liquid d. Equal to the weight of immersed portion of the body loats with 2/3 rd of its volume immersed and B floats with 1/2 f density of A and B is: c. 1:3 d. 3:1 g volume $1.3 \times 10^{-4} m^3$ is immersed in water measured by the c. 8.7N d. 9.7N c. mass of the body d. mass of the liquid displaced a volume $1.3 \times 10^{-4} m^3$ immersed in water, as measured by a
 10. A stone suspended on a string falls. The tena. greater than its weight c. zero A. A body floats in a liquid contained ir upthrust on the body due to liquid is a. Zero c. Equal to weight of body in air B. Two solids A and B float in water. A f th of its volume immersed. The ratio of a. 4:3 b. 3:4 C. The weight of 1Kg block of iron having spring balance is a. 6N b. 6.7N D. Buoyancy depends on: a. shape of the body b. depth E. The weight of 1Kg block iron having spring balance is a. 7.7N b. 8.7N 	asion in the string will be b. smaller than its weight but not zero d. cannot be predicted n a beaker. The whole system falls freely under gravity. The b. Equal to weight of displaced liquid d. Equal to the weight of immersed portion of the body loats with 2/3 rd of its volume immersed and B floats with 1/2 f density of A and B is: c. 1:3 d. 3:1 g volume $1.3 \times 10^{-4}m^3$ is immersed in water measured by the c. 8.7N d. 9.7N c. mass of the body d. mass of the liquid displaced a volume $1.3 \times 10^{-4}m^3$ immersed in water, as measured by a c. 6N d. 6.7N
 10. A stone suspended on a string falls. The tena. greater than its weight c. zero A. A body floats in a liquid contained ir upthrust on the body due to liquid is a. Zero c. Equal to weight of body in air B. Two solids A and B float in water. A f th of its volume immersed. The ratio of a. 4:3 b. 3:4 C. The weight of 1Kg block of iron having spring balance is a. 6N b. 6.7N D. Buoyancy depends on: a. shape of the body b. depth E. The weight of 1Kg block iron having spring balance is a. 7.7N b. 8.7N 	asion in the string will be b. smaller than its weight but not zero d. cannot be predicted a beaker. The whole system falls freely under gravity. The b. Equal to weight of displaced liquid d. Equal to the weight of immersed portion of the body loats with 2/3 rd of its volume immersed and B floats with 1/2 f density of A and B is: c. 1:3 d. 3:1 g volume $1.3 \times 10^{-4}m^3$ is immersed in water measured by the c. 8.7N d. 9.7N c. mass of the body d. mass of the liquid displaced a volume $1.3 \times 10^{-4}m^3$ immersed in water, as measured by a c. 6N d. 6.7N
 10. A stone suspended on a string falls. The ten a. greater than its weight c. zero A. A body floats in a liquid contained ir upthrust on the body due to liquid is a. Zero c. Equal to weight of body in air B. Two solids A and B float in water. A f th of its volume immersed. The ratio of a. 4:3 b. 3:4 C. The weight of 1Kg block of iron having spring balance is a. 6N b. 6.7N D. Buoyancy depends on: a. shape of the body b. depth E. The weight of 1Kg block iron having spring balance is a. 7.7N b. 8.7N 	asion in the string will be b. smaller than its weight but not zero d. cannot be predicted a beaker. The whole system falls freely under gravity. The b. Equal to weight of displaced liquid d. Equal to the weight of immersed portion of the body loats with 2/3 rd of its volume immersed and B floats with 1/2 f density of A and B is: c. 1:3 d. 3:1 g volume $1.3 \times 10^{-4}m^3$ is immersed in water measured by the c. 8.7N d. 9.7N c. mass of the body d. mass of the liquid displaced a volume $1.3 \times 10^{-4}m^3$ immersed in water, as measured by a c. 6N d. 6.7N
 10. A stone suspended on a string falls. The ten a. greater than its weight c. zero A. A body floats in a liquid contained ir upthrust on the body due to liquid is a. Zero c. Equal to weight of body in air B. Two solids A and B float in water. A f th of its volume immersed. The ratio of a. 4:3 b. 3:4 C. The weight of 1Kg block of iron having spring balance is a. 6N b. 6.7N D. Buoyancy depends on: a. shape of the body b. depth E. The weight of 1Kg block iron having spring balance is a. 7.7N b. 8.7N F. For a body floating in water, the apparents 	asion in the string will be b. smaller than its weight but not zero d. cannot be predicted n a beaker. The whole system falls freely under gravity. The b. Equal to weight of displaced liquid d. Equal to the weight of immersed portion of the body loats with 2/3 rd of its volume immersed and B floats with 1/2 f density of A and B is: c. 1:3 d. 3:1 g volume $1.3 \times 10^{-4}m^3$ is immersed in water measured by the c. 8.7N d. 9.7N c. mass of the body d. mass of the liquid displaced a volume $1.3 \times 10^{-4}m^3$ immersed in water, as measured by a c. 6N d. 6.7N ent weight is equal to
 10. A stone suspended on a string falls. The ten a. greater than its weight c. zero A. A body floats in a liquid contained ir upthrust on the body due to liquid is a. Zero c. Equal to weight of body in air B. Two solids A and B float in water. A f th of its volume immersed. The ratio of a. 4:3 b. 3:4 C. The weight of 1Kg block of iron having spring balance is a. 6N b. 6.7N D. Buoyancy depends on: a. shape of the body b. depth E. The weight of 1Kg block iron having spring balance is a. 7.7N b. 8.7N F. For a body floating in water, the apparea a. actual weight b. weight of light of l	The string will be b. smaller than its weight but not zero d. cannot be predicted in a beaker. The whole system falls freely under gravity. The b. Equal to weight of displaced liquid d. Equal to the weight of immersed portion of the body loats with 2/3 rd of its volume immersed and B floats with 1/2 f density of A and B is: c. 1:3 d. 3:1 g volume $1.3 \times 10^{-4} m^3$ is immersed in water measured by the c. 8.7N d. 9.7N c. mass of the body d. mass of the liquid displaced a volume $1.3 \times 10^{-4} m^3$ immersed in water, as measured by a c. 6N d. 6.7N ent weight is equal to quid displaced c. more than real weight d. zero
 10. A stone suspended on a string falls. The ten a. greater than its weight c. zero A. A body floats in a liquid contained ir upthrust on the body due to liquid is a. Zero c. Equal to weight of body in air B. Two solids A and B float in water. A f th of its volume immersed. The ratio of a. 4:3 b. 3:4 C. The weight of 1Kg block of iron having spring balance is a. 6N b. 6.7N D. Buoyancy depends on: a. shape of the body b. depth E. The weight of 1Kg block iron having spring balance is a. 7.7N b. 8.7N F. For a body floating in water, the apparea a. actual weight b. weight of light of l	The string will be b. smaller than its weight but not zero d. cannot be predicted in a beaker. The whole system falls freely under gravity. The b. Equal to weight of displaced liquid d. Equal to the weight of immersed portion of the body loats with 2/3 rd of its volume immersed and B floats with 1/2 f density of A and B is: c. 1:3 d. 3:1 g volume $1.3 \times 10^{-4} m^3$ is immersed in water measured by the c. 8.7N d. 9.7N c. mass of the body d. mass of the liquid displaced a volume $1.3 \times 10^{-4} m^3$ immersed in water, as measured by a c. 6N d. 6.7N ent weight is equal to quid displaced c. more than real weight d. zero