simplifiednote.com
Viscosity
10. a. Why stirred liquid comes to rest after some time?
b. A square metal plate of 10cm side moves parallel to another plate with a velocity of 10cms ⁻¹ , both plates immersed in water. if the viscous force is 200dyne and viscosity of water is 0.01 poise, what is their
distance apart? [0.05cm] 2
c. A flat plate of area 0.1m ² is placed on a flat surface and is separated from it by a film of oil 10 ⁻⁵ m thick
whose coefficient of viscosity is 1.5Nsm ⁻² . Calculate the force required to cause the plate to slide on the
surface at a constant speed of 1mms ⁻¹ . [15N] 2
d. There is a $1 mm$ thick layer of glycerin between a flat plate of area $100cm^2$ and a big plate. If the coefficient of viscosity of glycerin is $1 Kg/(ms)$, then how much force is required to move the plate
with a velocity of 7 cm/S ? 2
11. a. What is meant by streamline flow? Two streamlines can't cross each other. Why? 2
b. State and explain the equation of continuity in fluid dynamics. 2
c. Water is flowing in a non-uniform tube. At a point the radius is x cm and velocity is v cm/s. Write how
can you determine the velocity of water at another point? Mention the principle involved here. 2
d. Write down Newton's formula for viscosity. Write the unit and dimension of the coefficient of viscosity.2
e. A metal plate of area 2.5 cm^2 is placed on a $0.25 \times 10^{-3} m$ thick layer of castor oil at 20°C. If a force
of 2.5 <i>N</i> is needed to move the plate with a velocity $3 \times 10^{-2} m/s$, calculate the coefficient of viscosity of castor oil.
12. a. Write Poiseuille's equation. Is the formula applicable for an ideal fluid? Explain. 2
b. Using dimensional considerations, deduce Poiseuille's formula for the flow of a liquid through capillary
tube. 2
c. Glycerin flows steadily through a horizontal tube of length $1.5m$ and radius $1cm$. If the amount of
glycerin collected per second at one end is $4.0 \times 10^{-3} Kgs^{-1}$, what is the difference between the two
ends of the tube? (Density of glycerin = $1.3 \times 10^3 Kgm^{-3}$ and viscosity of glycerin = $0.83 Nsm^{-2}$). 2
 d. Water flows steadily through a horizontal pipe of varying cross-section at the rate of 20 liters per minute. Determine the velocity of water at a point where diameter is 4<i>cm</i>.
[Hint: Rate of flow: $V = Av$]
$Volume = A \times l \qquad \therefore \frac{Volume}{time} = \frac{A}{t} \implies Volume \ rate: V = A \times v$
e. In giving a patient a blood transfusion, the bottle is set up so that the level of blood is 1.3m above needle,
which has an internal diameter of 0.36mm and is 3 cm in length. If 4.5 cm ³ of blood passes through the
needle in one minute, calculate the viscosity of blood. The density of blood is 1020kgm ⁻³ . 2 f. A hose pipe of diameter 1cm is 20cm long. The pressure difference between the ends of the pipe is
1. A hose pipe of diameter run is 20cm long. The pressure dimetence between the ends of the pipe is 6.5×10^{-4} Nm ⁻² . Calculate the volume of water flow per second. (Viscosity of water = 10^{-3} NSm ⁻²) 2
g. Two tube A and B of length 200cm and 50cm have radii 0.2 mm and 0.4mm respectively. If a liquid
passing through the two tubes is entering A at a pressure of 90 cm of mercury and leaving B at a pressure
76 cm of mercury, determine the pressure at the junction of A and B. 3
h. Glycerin flows steadily through a horizontal tube of length $1.5m$ and radius $1cm$. If the amount of
glycerin collected per second at one end is $4.0 \times 10^{-3} Kgs^{-1}$, what is the difference between the two
ends of the tube? (Density of glycerin = $1.3 \times 10^3 Kgm^{-3}$ and viscosity of glycerin = $0.83 Nsm^{-2}$). 2
13. a. The diameter of water falling from a tap can be observed decreasing as it falls towards the ground, why?
Explain this on the basis of suitable principle. 2
 b. Plot the graph of variation of velocity with cross section area of water flow. c. Two spherical raindrops of equal size fall vertically through the air with a specific terminal velocity. If
these two drops were to coalesce to form a single drop and fall with a new terminal velocity, explain
how the terminal velocity of the new drop compares to the original terminal velocity.
8