Chapter: 2 Vectors: [Exam Model Questions]

MCQs: [1 marks each]

1. Which of the sets give below may represent the magnitudes of three vectors adding to be zero?
a. $2,4,8$
b. $4,8,16$
c. $1,2,1$
d. $0.5,1,2$
2. A vector is not changed if:
a. It is rotated through an arbitrary angle.
b. It is multiplied by an arbitrary scalar
c. It is cross multiplied by a unit vector
d. It is shifted parallel to itself
3. If $\vec{P} \cdot \vec{Q}=|\vec{P} X \vec{Q}|$, the angle between \vec{P} and \vec{Q} is,
a. 0
b. $\pi / 2$
c. $\pi / 4$
d. π
4. The resultant of \vec{A} and \vec{B} makes an angle α with \vec{A} and β with \vec{B}.
a. $\quad \alpha<\beta$
b. $\alpha<\beta$ if $\mathrm{A}<\mathrm{B}$
c. $\alpha<\beta$ if $A>B$
d. $\alpha<\beta$ if $\mathrm{A}=\mathrm{B}$
5. If $\vec{P} \cdot \vec{Q}=0$, the angle between \vec{P} and \vec{Q} is
a. 0
b. $\pi / 2$
c. $\pi / 4$
d. π
6. The resultant magnitude of two vector will be maximum, if angle between them is,
a. 0
b. $\pi / 2$
c. $\pi / 4$
d. π
7. What is the angle between $\vec{P} X \vec{Q}$ and $\vec{Q} \times \vec{P}$
a. 0
b. $\pi / 2$
c. $\pi / 4$
d. π
8. What is the angle between $\vec{P} X \vec{Q}$ and $\vec{P}+\vec{Q}$
a. 0
b. $\pi / 2$
c. $\pi / 4$
d. π
9. If \vec{A}, \vec{B} and \vec{C} have magnitude 6,8 and 10 respectively, and $\vec{A}+\vec{B}=\vec{C}$, angle between A and B is,
a. 0
b. 45
c. 90
d. 180
10. A force of $(3 \hat{\imath}+4 \hat{\jmath}) N$ acts on a body and displaces it by $(3 \hat{\imath}+4 \hat{\jmath}) m$. The work done by the forces is,
a. 10 J
b. 12 J
c. 16 J
d. 25 J
11. A force $(3 \hat{\imath}+c \hat{\jmath}+2 \hat{k}) N$ acting on a particle causes displacement of $(-4 \hat{\imath}+2 \hat{\jmath}+3 \hat{k}) m$ in its own direction. If work done is 6 J , then value of ' c ' is,
a. 0
b. 1
c. 6
d. 12
12. Three vectors satisfy the relation $\vec{A} \cdot \vec{B}=0$ and $\vec{A} \cdot \vec{C}=0$, then A is parallel to,
a. $\vec{B} X \vec{C}$
b. $\vec{B} . \vec{C}$
c. \vec{C}
d. \vec{B}
13. The value of $\hat{\imath} .(\hat{\jmath} x \hat{k})$ is,
a. 1
b. 0
c. $\hat{\jmath}$
d. \hat{k}
14. Two vectors $\vec{A}=5 \hat{\imath}+7 \hat{\jmath}-3 \hat{k}$ and $\vec{B}=2 \hat{\imath}+2 \hat{\jmath}-a \hat{k}$ are perpendicular to each other, then the value of a is,
a. 12
b. -12
c. 8
d. -8
15. If $\vec{P} \cdot \vec{Q}=|\vec{P} X \vec{Q}|$, then $|\vec{P}+\vec{Q}|$,
a. $A+B$
b. $A-B$
c. $\sqrt{A^{2}+B^{2}+\sqrt{2} A B}$
d. zero
16. Two forces of magnitude F have resultant of same magnitude F . Angle between two forces is,
a. 45^{0}
b. 120^{0}
c. 150^{0}
d. 180°

SAQs \{5 marks type questions $\}$

1. a. A vector has both magnitude and direction does it mean that anything that has magnitude and direction is necessarily a vector? Explain with example.
b. If $\vec{A}=4 \hat{\imath}-\hat{\jmath}+3 \hat{k}$ and $\vec{B}=7 \hat{\imath}+5 \hat{\jmath}+\hat{k}$:
i. Find the unit vector of vector \vec{A}.
ii. Find scalar product (Dot product) of \vec{A} and \vec{B}
iii. Find the angle between vector \vec{A} and \vec{B}.
iv. Find vector product (Cross Product) of \vec{A} and \vec{B}
v. Find the magnitude of $2 \vec{A}+3 \vec{B}$
