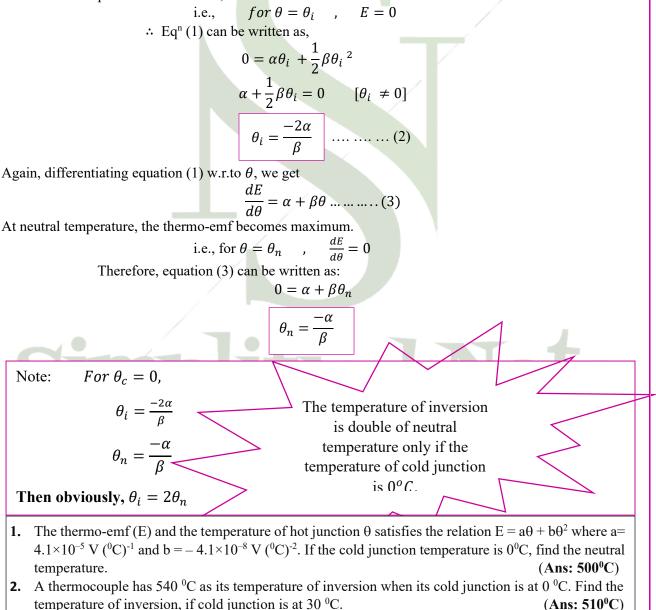
Further, if the temperature of cold junction is kept at 0° C, then mathematically, variation of thermo emf is given by, (parabolic nature)

$$E = \alpha \theta + \frac{1}{2}\beta \theta^2$$

Here, θ is the temperature of hot junction, $\alpha \& \beta$ are thermoelectric constants, whose values depend upon the **nature of metal used in thermocouple** and also depend upon **temperature difference of two junctions.**


Relation between α , β , θ_i and θ_n :

Consider a thermocouple whose cold junction is kept at 0°C, then mathematically, variation of thermo emf is given by, (parabolic nature)

$$E = \alpha \theta + \frac{1}{2} \beta \theta^2 \dots \dots \dots \dots (1)$$

Where, θ is the temperature of hot junction.

We know at temperature of inversion, the thermo-emf becomes zero.

