Acoustics

Day 1: Pressure Amplitude

- 1. If pressure amplitude of a sound wave is tripled, the intensity of sound increases to
 - a. 3 times b. 6 times c. 9 times d. $\sqrt{3}$ times
- If pressure of a sound wave is doubled, the intensity of sound

 a. increases 2 times
 b. decreases 2 times
 c. increases 4 times
 d. increases 8 times
- 1. a. How does pressure amplitude change with displacement amplitude? Show that pressure wave varies with displacement wave by phase of 90°.
 - b. If the intensity of the song at your position is $1.4 \times 10^{-8} Wm^{-2}$ and frequency is 6kHz, what are the pressure and displacement amplitudes? [velocity of sound= $320ms^{-1}$; density of air= $2.29Kgm^{-3}$.]

[Ans: 3.39 x 10^{-3} Pa, 2.18 x 10^{-10} m]

[3 dB]

- 2. a. What is pressure amplitude? Describe sound wave as a pressure wave and deduce an expression for the pressure amplitude.
 - b. Interpret sound wave graphically using comparison graph between displacement & pressure variation equation.
 - c. Compare pressure amplitude & displacement amplitude for interpretation of sound wave.
 - d. Water at 20°C has a bulk modulus of 2.2×10^9 Pa and the speed of sound in water at this temperature is 1480 m/s. For 1000 Hz, sound waves in water at 20°C, what displacement amplitude is produced if the pressure amplitude is 3×10^{-2} Pa. [Ans: 3.2×10^{-32} m]

Day 2: Intensity and Intensity level

- 3. a. Define the intensity of sound. Mention its unit & dimension.
 - b. Show that the intensity of sound for a given frequency is directly proportional to the square of amplitude of vibration.
 - c. Why does an empty vessel produce more sound than a filled one?
 - d. The ratio of intensities of two waves at a point is 25:16. Calculate the ratio of amplitude of two waves.
 - e. Does amplitude of sound decrease with distance from the source? Explain.
 - f. What is the minimum value of sound intensity that normal ear can hear clearly.
 - g. Differentiate between (i) music and noise (ii) infrasonic, sonic and ultrasonic sound.
 - h. Find the amplitude of vibration of the particles of air through which a sound wave of intensity $2 \times 10^{-6} W/m^2$ and frequency 1 *KHz* is passing. Density of air is $1.2 kg/m^3$ and speed of sound in air is 330 m/s. [1.6 × 10⁻⁸ m]
- 4. a. What do you mean by intensity and intensity level of sound? Is there any relation between them?
 - b. Define bel and decibel? Write their relation. Write short notes on (i)pitch (ii) loudness and (iii) quality of sound.c. When a jet plane is flying on elevation of 1000m the sound level on the ground is 4.0 dB. What would be the
 - intensity level on the ground when its elevation is as low as 100m? [Ans: 24 dB] d. A sound has an intensity of $5 \times 10^{-7} Wm^{-2}$. What is decibel sound level? What is the bel level? [57 dB; 5.7 bel] ask for weekend:

Task for weekend:

1.	The reference i	ntensity of audibility is 10^{-12} V	$W m^{-2}$. The sound level f	For intensity $10^{-4} W m^{-2}$ will be:
	a 8 dB	b 80 <i>dB</i>	c 108 dB	d 160 <i>dB</i>

- 2. The intensity levels of two waves of same frequency in a given medium are 20 *dB* and 60 *dB*. Then the ratio of their amplitude is
 - a. 1:4 b. 1:16 c. 1:100 d. 1:104
- 3. The maximum tolerable sound intensity in dB is
 - a. 0 dB b. 1 dB c. 120 dB d. 200 dB
- 4. The intensity levels of two waves of same frequency in a given medium are $20 \, dB$ and $60 \, dB$. Then the ratio of their amplitude is
 - a. 1:4 b. 1:16 c. 1:100 d. 1:104
- 5. A beam of sound is 10⁶ times as intense as that with minimum audible intensity. The intensity level of the beam is

a.	$10^6 dB$ b. 60 dB c. 6	6 dB d. 0.6 dB	
1.	Intensity of sound from a point source is $10^{-8} Wm^{-1}$	$^{-2}$ at a distance of 5 <i>m</i> . What will be the intensity an	nd intensity
	level of sound at a distance of $20 m$ from the same set	source. [6. $25 \times 10^{-10} Wm^{-2}$; 2	27.95 <i>dB</i>]
2.	The power output of a point source of sound is 1 Watt	t. It radiates sound energy uniformly in all directions	s. Calculate
	the intensity level at distances (i) 100 m and (ii) 500) m from the source. $[69 dB]$; 55 dB]
3.	When a jet plane is flying at an elevation of 1000m,	the sound level on the ground is $4 dB$. What would	d be the
	intensity level on the ground when its elevation is as	s low as 50 m?	[30 <i>dB</i>]
4.	The volume level of an outdoor public address system	em is adjusted to $55 dB$ for people 5 m away. What	will be its
	intensity level for people at distance 45 m?	[35.9 <i>dB</i>]

5. If the intensity of sound is doubled, by how many decibels does the sound level increase?