If 'F' is the force applied on a body whose momentum at time 't' is 'p', then from Newton's 2^{nd} law,

Force (F) \propto Rate of change of momentum $\left(\frac{dp}{dt}\right)$ or, $F \propto \frac{dp}{dt}$ or, $F = k \frac{dp}{dt}$; k is proportionality constant and its value is one $\therefore F = \frac{dp}{dt} - - - - - (1)$

We have, p = mv, then eq. (1) becomes,

$$F = \frac{d(mv)}{dt}$$

or, $F = m\frac{dv}{dt} + v\frac{dm}{dt}$ [differential form of Newton's 2nd law]

Since, mass is constant, $\frac{dm}{dt} = 0$, then

or,
$$F = m \frac{dv}{dt}$$

or, $F = ma$, $a = \frac{dv}{dt}$ is acceleration of a body
 $\therefore F_{net} = ma$

If we know the mass (m) and acceleration (a) of a body, we can calculate the net force acting on the body.

- Newton's 2nd law of motion gives the quantitative (measurement) of force. (significance of 2nd law)
- The force is a vector quantity. It SI unit is kgm/s^2 or Newton (N). Its dimension is $[M^1L^1T^{-2}]$
- If m = 1kg and $a = 1m/s^2$ then F = 1N. Hence, 1N force is defined as the that force which produces an acceleration of $1m/s^2$ when applied on a body of mass 1kg.

•
$$1N = 10^5 dyne$$

Questions:

- 1. A body of mass 5kg at rest is acted by a force. After 5 sec, the body covers 50m displacement. Calculate the force acting on the body.
- 2. A force of 10N in applied at 60° to above the horizontal. Find the acceleration of 5kg body which moves in horizontal direction.

Newton's 3rd law:

Statement: "To every action, there is an equal and opposite reaction". i.e. Action = -Reaction

- The action and reaction always act on *two different bodies*. Hence, they never cancel each other.
- The forces always exist in pairs. (Significance of Newton's 3rd law)
- Action-reaction pairs are of the same nature.
- This law cannot be applied to a single body. There should be an interaction between two bodies. In an interaction between two bodies in contact, the force applied by one body on the other creates a reaction force which is equal and opposite to the action.

Some Applications of Newton's 3rd law:

- While walking, a person pushes the ground in the backward direction, and the ground in return pushes the person in the forward direction, thus making him walk.
- When a bullet is fired from a gun, the gun recoils. In rocket propulsion, the burnt fuel moves downward and the rocket moves upward.
- When a man jumps from a boat, the boat moves backwards away from him. While it is difficult to walk in sand or ice. This is because we cannot push the ground sufficiently hard. As a result, the reaction force is not sufficient to help us move forward.