IDEAL GAS LAWS

Day 1 and 2: Gas laws

- 1. a. Compare between real and ideal gas. Under what conditions oxygen gas behaves as an ideal gas?
 - b. Do you expect the gas in cooking gas cylinder to obey the ideal gas equation? Explain.
 - c. State Boyle's law and Charles law. Interpret the laws using PV diagram.
 - d. When a car is driven some distance, the air pressure in the tyre increases. Why?
 - e. Why does a cycle tyre burst in summer?
 - f. A cylinder of volume 40 litres is filled with air to a pressure of $200 \times 10^3 Pa$. A piston is then compressed to a volume of 2.5 litres. Calculate the pressure of the compressed gas? [Ans: $3.2 \times 10^5 Pa$]
- 2. a. Deduce ideal gas equation by combining Boyles and Charles laws.
 - b. A gas at $27^{\circ}C$ in a cylinder has a volume of 4 litres and pressure $100Nm^{-1}$. Then the gas is compressed at constant temperature, so that the pressure is $150Nm^{-2}$. It is then heated at constant volume, so that temperature becomes $127^{\circ}C$. Calculate new pressure. [Ans: $200Nm^{-2}$]
 - c. Write equation of state for an ideal gas. Find the number of molecules and the number of moles in one cubic meter of air at 1 atm pressure and $0^{\circ}C$. [Ans: 2.68 × 10²⁵ molecules]
 - d. A gas in a cylinder has a mass of 10Kg and pressure of 8 atm at $27^{\circ}C$. When some gas is used in cold room at $-3^{\circ}C$, the gas remaining in the cylinder at this temperature has a pressure of 6.4 *atm*. Calculate the mass of gas used.

[Ans: 1. 1Kg]

e. The correct inflation of tyre at $20^{\circ}C$ is $2 Kg/cm^2$. After driving several hours, the driver checks the tyres. If the tyre's temperature is $50^{\circ}C$, what should be the pressure reading? [Ans: $2.2 \times 10^5 N/m^2$]

Day 3 and 4: Expansion of gas/ Kinetic theory of gas

- 3. a. Define universal gas constant. Write its unit and dimension.
 - b. Write the physical significance of universal gas constant.
 - c. Which has more molecules: 1Kg of Hydrogen or 1 Kg of oxygen?
 - d. What is Avogadro's number? Is there same number of atoms in 1 mole of hydrogen (H_2) and 1 mole of helium (He)?
 - e. Define volume coefficient and pressure coefficient of gas. How volume coefficient and pressure coefficient are related?
 - f. Two bulbs of equal volume are joined by a narrow tube and are filled with gas at STP. When one bulb is kept in melting ice and the other in boiling water, calculate the new pressure of the gas. [Ans: 877.6 mm of Hg]
- 4. a. Write the postulates of kinetic theory of gases. Derive the expression for pressure exerted by gas on the wall of a cube.
 - b. Starting from pressure equation, obtain an expression for (i) Average translation kinetic energy of molecule of gas (ii) Average translational kinetic energy of gas.
 - c. Calculate the total translational KE of the molecules of 5 moles of an ideal gas at $127^{\circ}C$. [Ans: $1.49 \times 10^{4}J$]
 - d. What is the average translational kinetic energy of an oxygen molecule at a temperature of 300K? [Ans: $6.23 \times 10^{-21} J$]
 - e. Calculate the total translational kinetic energy of 3 moles of gas at $227^{\circ}C$. [$R = 8.31 Jmol^{-1}K^{-1}$] [Ans: $1.87 \times 10^{4}J$]
 - f. Will the temperature of gas in a container increase when we put the container on a moving train? Explain.

Day 5 and 6: Kinetic theory of gas

- 5. a. Define root mean square speed of gas. Why rms speed of hydrogen and oxygen are different at the same temperature?
 - b. The rms speed of hydrogen at 27°*C* is 1800m/s. What will be the rms speed of oxygen at 127°*C*? [Relative molecular masses of hydrogen and oxygen are 2 and 32 respectively] [Ans: **519.6 m/s**]
 - c. Calculate the rms speed and average KE of a molecule of oxygen gas at a temperature of $27^{o}C$.

[Ans: 44. 4m/s, 6. 23 × 10⁻²¹J]

- d. Calculate the temperature at which the rms speed of hydrogen molecule will be 11 Km/s. [R = 8.31/molK] [9446°C]
- e. Find the rms speed of nitrogen molecules at 273K and 1atmospheric pressure. Density of nitrogen at this condition is $1.25 \times 10^{-3} gm/cm^3$. [Ans: 93m/s]
- 6. a. Three different cylinders contain different gases H_2 , O_2 , N_2 at the same temperature. Which one of the above gas has maximum rms speed?
 - b. An ideal gas is contained in a cylinder at a temperature of $27^{\circ}C$. What is the average translational KE of a molecule? What is the total random translational kinetic energy of the molecules in 1 mole of this gas? What is the rms speed of oxygen molecules at this temperature? [Relative molecular mass of oxygen is 32. [$R = 8.31 Jmol^{-1}K^{-1}$]

[Ans: 1.24×10^{-20} *J*, 3739.5*J*, 484.4*m/s*]

c. At what temperature will the average speed of oxygen molecules be sufficient to escape from the earth? [Given, escape velocity from earth11.2*Km/s*, mass of one oxygen molecule= $53.4 \times 10^{-24} gram$] [Ans: **161496**.4*K*]