> Destructive interference occurs when two light waves superimpose in opposite phase.

$$
[\text { Phase difference }=\pi, 3 \pi, 5 \pi \quad\{(2 n-1) \pi ; n=1,2, \ldots\}] \quad \text { Odd } \pi
$$

And $\quad\left[\right.$ Path difference $\left.=\frac{\lambda}{2}, 3 \frac{\lambda}{2}, 5 \frac{\lambda}{2}, 7 \frac{\lambda}{2}, \ldots \ldots \quad\left\{(2 n-1) \frac{\lambda}{2} ; n=1,2, \ldots\right\}\right]$
Destructive interference occurs when two waves superimpose in such a way that crest meets trough and trough meets crest.
\Rightarrow At constructive interference: amplitude: $A=A_{\text {min }}=\left|A_{1}-A_{2}\right|$

$$
\text { and intensity: } I=I_{\min }=I_{1}+I_{2}-2 \sqrt{I_{1} I_{2}}
$$

Note: $\quad \vec{A}=\overrightarrow{A_{1}}+\overrightarrow{A_{2}}$

$$
\therefore \quad A^{2}=A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos \phi \quad I=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}} \cos \phi
$$

For maxima, $\phi=0^{\circ}$ (same phase) $\therefore A_{\max }=A_{1}+A_{2} \quad$ and, $I_{\max }=k A_{\max }{ }^{2}$

$$
I_{\max }=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}}
$$

For minima, $\phi=180^{\circ}$ (out of phase) $\quad \therefore A_{\min }=A_{1}-A_{2} \quad$ and, $I_{\min }=k A_{\min }{ }^{2}$

$$
I_{\min }=I_{1}+I_{2}-2 \sqrt{I_{1} I_{2}}
$$

- Intensity of wave A is $4 I$ and that of B is I. The ratio of maximum to minimum intensity in Young's double slit experiment is:
a. 1:9
b. 9:1
c. 1:4
d. 5:3
- Ratio of intensity of two waves is $25: 1$. If interference occurs, then ratio of maximum to minimum intensity will be
a. $25: 1$
b. $1: 25$
c. $9: 4$
d. $4: 9$
- Two waves with amplitude a and $4 a$ interfere. If the phase difference at a point is 60°, the intensity at the point is
a. 25 units
b. 21 units
c. 15 units
d. 5 units
- Two coherent sources produce a dark fringe when the phase difference between interfering wave is
a. π
b. $(2 n+1) \pi$
c. $(2 n-1) \pi$
d. All
- The resultant amplitude in interference with two coherent source depends upon
a. Amplitude
b. phase difference
d. only a
d. both a and b
- Twos coherent source of light produce constructive interference when phase difference between them is
a. π
b. 3π
c. $n \pi$
d. All
- If the intensity of waves observed by two coherent sources is I. Then intensity of resultant wave in constructive interference will be
a. I
b. 21
c. $4 I$
d. $8 I$
- Two waves with amplitude a and $4 a$ interfere. The ratio of maximum to minimum intensity is
a. $25: 9$
b. $9: 25$
c. $5: 3$
d. $3: 5$

