ANALYTICAL TREATMENT IF INTERFERENCE OF LIGHT

Consider two coherent light waves (from $S_{1} \& S_{2}$) produced from a single monochromatic source (S), as shown in figure.
The displacement equation of two waves is:

$$
\begin{gathered}
y_{1}=a \sin \omega t \\
\text { and, } \quad y_{2}=a \sin (\omega t+\phi)
\end{gathered}
$$

Here, ϕ is the phase difference between the waves. From principle of superposition of waves, the displacement of resultant wave (\boldsymbol{y}) is:

$$
\left.\begin{array}{ll}
& \begin{array}{l}
y \\
\text { or }
\end{array} \\
y & =a \sin \omega t+y_{2} \\
\text { or } & y \\
\text { or } & =a[\sin \omega t+\sin (\omega t+\phi)] \\
\text { or } & y
\end{array}\right)=a\left[2 \sin \left(\frac{\omega t+\omega t}{2}\right) \cos \left(\frac{\omega t-\omega t-\phi}{2}\right)\right] \quad \text { : Equation of resultant wave. }
$$

$$
\text { Here, } 2 \boldsymbol{a} \cos \left(\frac{\phi}{2}\right) \text { is the amplitude of resultant wave. }
$$

i. Conditions and positions of maxima (constructive interference):

The intensity of the resultant wave is maximum if amplitude $2 \boldsymbol{a} \cos \left(\frac{\phi}{2}\right)$ is maximum.

For constructive interference, the phase difference between two interfering waves should be even multiple of π.
or $\quad \frac{1}{2} \frac{2 \pi}{\lambda} x=n \pi \quad\left[\because\right.$ (phase difference), $\phi=\frac{2 \pi}{\lambda} \times x$ (path difference) $]$

or	$x=n \lambda$: path difference for constructive interference.

For constructive interference, the path difference between two interfering waves should be integral multiple of λ.
ii. Conditions and positions of minima (destructive interference):

The intensity of the resultant wave is minimum if amplitude $2 a \cos \left(\frac{\phi}{2}\right)$ is minimum.

i.e.,	$\cos \left(\frac{\phi}{2}\right)=0$		
or	$\cos \left(\frac{\phi}{2}\right)$	$=\cos (2 n-1) \frac{\pi}{2}$	$(n=1,2,3 \ldots)$
or		$\frac{\phi}{2}=(2 n-1) \frac{\pi}{2}$	
With, $A_{\text {min }}=0$			
And $I_{\text {min }}=0$			

For destructive interference, the phase difference between two interfering waves should be odd multiple of π.

$$
\text { or } \quad \frac{1}{2} \frac{2 \pi}{\lambda} x=(2 n-1) \frac{\pi}{2}
$$

