ANALYTICAL TREATMENT IF INTERFERENCE OF LIGHT

Consider two coherent light waves (from $S_1 \& S_2$) produced from a single monochromatic source (S), as shown in figure. The displacement equation of two waves is:

 $y_1 = a \sin \omega t$

and,

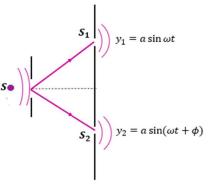
 $y_2 = a \sin(\omega t + \phi)$

Here, ϕ is the phase difference between the waves.

From principle of superposition of waves, the displacement of resultant wave (y) is:

$$y = y_1 + y_2$$

or $y = a \sin \omega t + a \sin(\omega t + \phi)$
or $y = a[\sin \omega t + \sin(\omega t + \phi)]$
or $y = a\left[2\sin\left(\frac{\omega t + \omega t}{2}\right) - \cos\left(\frac{\omega t - \omega t - \phi}{2}\right)\right]$
or $y = 2a\cos\left(\frac{\phi}{2}\right) \sin(\omega t + \frac{\phi}{2})$: Equation



quation of resultant wave.

Here, $2a\cos\left(\frac{\phi}{2}\right)$ is the amplitude of resultant wave.

i. Conditions and positions of maxima (constructive interference):

The intensity of the resultant wave is maximum if amplitude $2a\cos\left(\frac{\phi}{2}\right)$ is maximum.

i.e., $\cos\left(\frac{\phi}{2}\right) = \pm 1$ or $\cos\left(\frac{\phi}{2}\right) = \cos n\pi$ (n = 0, 1, 2, 3 ...) $With, A_{max} = \pm 2a$ $\therefore I \propto A^2$ $\therefore I = 4a^2 \cos^2 \frac{\phi}{2}$ And $I_{max} = 4a^2$ or $\frac{\phi}{2} = n\pi$ $\phi = 2n\pi$: phase difference for constructive interference.

For constructive interference, the **phase difference** between two interfering waves should be **even multiple of** π . or $\frac{\frac{1}{2} \frac{2\pi}{\lambda} x = n \pi \quad [\because (phase difference), \phi = \frac{2\pi}{\lambda} \times x (path difference)]$ or $x = n \lambda$: path difference for constructive interference.

For constructive interference, the **path difference** between two interfering waves should be **integral multiple of** λ . ii. Conditions and positions of minima (destructive interference):

The intensity of the resultant wave is minimum if amplitude $2a\cos\left(\frac{\phi}{2}\right)$ is minimum.

i.e.,
$$\cos\left(\frac{\psi}{2}\right) = 0$$

or $\cos\left(\frac{\phi}{2}\right) = \cos\left(2n-1\right)\frac{\pi}{2}$ $(n = 1, 2, 3 ...)$
With, $A_{min} = 0$
And $I_{min} = 0$
or $\frac{\phi}{2} = (2n-1)\frac{\pi}{2}$
 $\phi = (2n-1)\pi$: phase difference for destructive interference.

For destructive interference, the **phase difference** between two interfering waves should be **odd multiple of** π .

$$\frac{1}{2}\frac{2\pi}{\lambda}x = (2n-1)\frac{\pi}{2}$$

or