YOUNG’S DOUBLE SLIT EXPERIMENT
 Determination of fringe width
 Determination of wavelength of monochromatic wave.

Note:
Approximations to be used:

1. Small d
2. large D
3. small θ

Figure: Interference due to double slit

The given figure shows the interference between two coherent light waves (from ($\boldsymbol{S}_{\mathbf{1}}$ and \boldsymbol{S}_{2}). The two coherent sources of light are separated by distance \boldsymbol{d} and \boldsymbol{D} be the distance between the plane of source and the screen.

Fringe width (β): The distance between any two successive bright fringes (or distance between two successive dark fringes) is called as fringe width.

1. Condition and Position of Central Maximum [Primary maxima]:

Any point on the screen will be a point of central maxima if light from S_{1} and S_{2} reaches the point in same phase or if the path difference is zero.
Point \boldsymbol{O}, on the screen, is equidistant from each source. Hence, the path difference between each corresponding waves reaching to point \boldsymbol{O} will be zero.

Therefore, point \boldsymbol{O} is the point of central maximum (central bright fringe).
2. Condition and Position of secondary maxima and secondary minima:

In figure, point P is at distance y from the central maxima on the screen. The path difference between the rays reaching at point P is:
path difference $=\boldsymbol{B} \boldsymbol{N}=\boldsymbol{d} \boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}[$ From $\triangle A B N]$ for small θ, path difference $=\boldsymbol{d} \times \boldsymbol{\theta}$... [1]

Also, in triangle $\triangle P C O$,

$$
\begin{equation*}
\tan \theta \approx \theta=\frac{y}{D} . \tag{2}
\end{equation*}
$$

For small angle θ,
$\sin \theta \approx \theta$
and, $\tan \theta \approx \theta$

