

The given figure shows the interference between two coherent light waves (from $(S_1 \text{ and } S_2)$). The two coherent sources of light are separated by distance d and D be the distance between the plane of source and the screen.

<u>Fringe width</u> (β): The distance between any two successive bright fringes (or distance between two successive dark fringes) is called as fringe width.

1. <u>Condition and Position of Central Maximum [Primary maxima]:</u>

Any point on the screen will be a point of central maxima if light from S_1 and S_2 reaches the point in same phase or if the path difference is zero.

Point **0**, on the screen, is equidistant from each source. Hence, the path difference between each corresponding waves reaching to point **0** will be zero.

Therefore, point **0** is the point of central maximum (central bright fringe).

2. Condition and Position of secondary maxima and secondary minima:

In figure, point *P* is at distance *y* from the central maxima on the screen. The path difference between the rays reaching at point *P* is:

path difference = $BN = d \sin\theta$ [From ΔABN]	For small angle θ ,	
for small θ , path difference = $d \times \theta \dots \dots \dots [1]$	sin heta pprox heta	
Also, in triangle ΔPCO ,		
$tan\theta \approx \theta = \frac{y}{p} \dots \dots \dots [2]$	and, $tan \theta \approx \theta$	
D		