

As in previous case, the parallel component light (with amplitude $E_{o} \cos \theta$) are allowed to pass through analyzer and the perpendicular components (with amplitude $E_{o} \sin \theta$) are absorbed.

Then the intensity of light transmitted through the analyzer is:

$$
\begin{array}{ll}
& I \propto\left(E_{o} \cos \theta\right)^{2} \\
\text { Or, } \quad & I=E_{o}^{2} \cos ^{2} \theta . \tag{2}
\end{array}
$$

\qquad
From equations (1) and (2), we get

Note:

Malus law:

If, $I_{1}=$ intensity of unpolarized light
$I_{2}=$ intensity of light transmitted through $1^{\text {st }}$ polaroid
$I_{3}=$ intensity of light transmitted through $2^{\text {st }}$ polaroid
Then, $I_{2}=\frac{I_{1}}{2} \quad$ and $I_{3}=I_{2} \cos ^{2} \theta$, where θ is the angle between two polaroids.

1. Two polaroids are oriented with their planes perpendicular to incident light and their transmission axes are oriented at 60°. Then the percentage of finally transmitted polarized light will be:
a. 12.5%
b. 37.5%
c. 62.5%
d. 87.5%
2. In the given figure, two Polaroids: P_{1} and P_{2} are oriented at an angle 60°. If the intensity of unpolarized light incident into P_{1} is I , then the intensity of light emerging from P_{2} is:

a. $\frac{I}{4}$
b. $\frac{I}{8}$
c. $4 I$
d. $8 I$
3. Two polaroids are inclined at angle of 30°. The intensity of unpolarized light is E. The ratio of transmitted intensity to absorbed intensity is:
a. $3 / 8$
b. $3 / 5$
c. $3 / 4$
d. $5 / 3$
