Verification:

Consider two parallel rays of light (in air) incident upon a reflecting surface as shown in figure.
When $\boldsymbol{r a y} I$ reaches to point \boldsymbol{A}, the ray II reaches to point \boldsymbol{A}^{\prime}. Hence, $\boldsymbol{A} \boldsymbol{A}^{\prime}$ behave as the incident wavefront. Similarly, $\boldsymbol{B B}^{\prime}$ behave as reflected wave front.

First law: As shown in figure, the incident ray (ray I), the normal line and the reflected ray (ray I), all meet at point \boldsymbol{A} on the same plane. This verifies the first law of reflection.

Second law: In the time ray I travels from point \boldsymbol{A} to \boldsymbol{B}^{\prime}, the ray II travels from point \boldsymbol{A}^{\prime} to \boldsymbol{B}.

$$
\therefore A B^{\prime}=A^{\prime} B=c t \ldots \ldots \ldots(1) \quad ; c=\text { speed of light in air. }
$$

In figure, in triangles $\triangle A A^{\prime} B$ and $\triangle B B^{\prime} A$,

$$
\begin{array}{ll}
A B=A B & ; \text { Being common side } \\
A^{\prime} B=A B^{\prime}=c t & ; \text { Distance travelled by two light rays in same time in same medium. } \\
A A^{\prime}=B B^{\prime} & ; \text { Remaining sides }
\end{array}
$$

Hence, by SSS property these two triangles are congruent.

$$
\therefore \angle A^{\prime} A B=\angle B^{\prime} B A
$$

i.e., $\quad i=r \quad$ This verifies the second law of reflection of light.

2. Verification of law refraction of light:

The laws of refraction of light are:
I. The incident ray, refracted ray and normal line all lie at same point in a same plane.
II. The ratio of sine of angle of incidence to sine of angle of refraction for a medium is always constant.

$$
\text { i.e., } \frac{\operatorname{Sin} i}{\operatorname{Sin} r}=a \text { constant }(\mu)
$$

Rough:

Width if incident wavefront $=A A^{\prime}$
Width if refracted wavefront $=B B^{\prime}$

