Verification:

Consider two parallel rays of light (in air) incident upon a refracting surface of refractive index $\boldsymbol{\mu}$, as shown in figure.

When ray I reaches to point \boldsymbol{A}, the ray II reaches to point \boldsymbol{A}^{\prime}. Hence, $\boldsymbol{A} \boldsymbol{A}^{\prime}$ behave as the incident wavefront. Similarly, $\boldsymbol{B B}^{\prime}$ behave as refracted wave front.

First law: As shown in figure, the incident ray (ray I), the normal line and the refracted ray (ray I), all meet at point \boldsymbol{A} on the same plane. This verifies the first law of refraction.

In addition, in the time ray I travels from point \boldsymbol{A} to \boldsymbol{B}^{\prime} through the medium, the ray II travels from point \boldsymbol{A}^{\prime} to \boldsymbol{B} in air medium.

$$
\begin{aligned}
\therefore & A B^{\prime}=v t \\
A^{\prime} B & =c t
\end{aligned} \quad\left[\ldots \ldots(1) \quad \begin{array}{l}
; v=\text { speed of light in medium. } \\
\\
; c=\text { speed of light in air. }
\end{array}\right.
$$

Now,
In triangles $\triangle A A^{\prime} B$ and $\triangle A B^{\prime} B$

$$
\begin{array}{llll}
& \sin i=\frac{A^{\prime} B}{A B} & \text { and } & \sin r=\frac{A B \prime}{A B} \\
\text { or } & \sin i=\frac{c t}{A B} & \text { and } & \sin r=\frac{v t}{A B}
\end{array}
$$

Therefore, $\quad \frac{\sin i}{\sin r}=\frac{c t}{A B} \times \frac{A B}{v t}$

$$
\therefore \frac{\sin i}{\sin r}=\frac{c}{v}=\mu(\text { constant for a medium }) \quad \text { This verifies the second law of refraction. }
$$

1. A plane wavefront is incident on a water surface at an angle of incidence 60° then it gets refracted at an angle of 45°.
(i) The ratio of width of incident wavefront to that of refracted wavefront is:
a. $\sqrt{2}$
b. 1.66
c. $\frac{\sqrt{3}}{2}$
d. $\frac{1}{\sqrt{2}}$
(ii) The refractive index of water is:
a. $\sqrt{2}$
b. $\sqrt{1.66}$
c. $\sqrt{\frac{3}{2}}$
d. $\frac{1}{\sqrt{2}}$
2. The wavelength of yellow light in air is 580 nm . The wavelength in diamond of refractive index 2.4 is
a. 200 nm
b. 240 nm
c. 280 nm
d. 320 nm
