

Figure: Intensity variation graph in Young's Double Slit Experiment

## Width of central maximum:

## 1. Angular width:

The angle subtended between $1^{\text {st }}$ secondary minima on either side of central maxima at center of slit is the angular width of central maxima.
Angular width of central maxima, $\quad \theta=2 \theta_{1}$

$$
\theta=\frac{\lambda}{d}=\frac{\beta}{D}
$$

## 2. Linear width:

The linear distance between $1^{\text {st }}$ secondary minima on either side of central maxima is the linear width of central maxima.
Linear width of central maxima, $L=2 y_{1}$

$$
L=\frac{\lambda D}{d}=\beta
$$



## SUM UP:

* For central maximum, path difference $=0$ and phase difference $=0$.
* Angular width of central maximum $=\frac{\lambda}{d}=\frac{\beta}{D}$ (in radians)
* Linear width of central maximum $=\frac{\lambda D}{d}=\beta$


## Secondary minima:

Linear position: $y_{n}=(2 n-1) \times \frac{\lambda D}{2 d}$
Fringe width, $\boldsymbol{\beta}=\frac{\lambda \boldsymbol{D}}{\boldsymbol{d}}$

Secondary maxima:
Linear position: $y_{n}=n \frac{\lambda D}{2 d}$
$[n=1,2,3, \ldots]$

