4. The amplitude of the unpolarized light incident on the polarizer is ' a '. What will be the amplitude on the polarized light transmitted through it?
a. $\frac{a}{2}$
b. $\frac{a}{\sqrt{2}}$
c. $\sqrt{\frac{3}{2}} a$
d. $\frac{3}{4} a$
5. The critical angle of a certain medium is $\sin ^{1}(3 / 5)$. The polarizing angle of the medium is
a. $\tan ^{-1}(4 / 5)$
b. $\tan ^{-1}(5 / 3)$
c. $\tan ^{-1}(3 / 4)$
d. $\tan ^{-1}(4 / 3)$
6. A light beam is incident at θ on an interface of air glass such that angle between reflected and refracted beams is 90°, Then θ is
a. $\tan ^{-1}(3 / 2)$
b. $\tan ^{-1} 2$
c. $\tan ^{-1}(3 / 4)$
d. $\tan ^{-1}(4 / 3)$
7. An unpolarized beam of light is incident on a group of four polarizing sheets which are arranged in such a way that the characteristic direction of each polarizing sheet makes an angle of 30° with that of the preceding sheet. The percentage of incident light transmitted by first polarizer will be
a. 20%
b. 25%
c. 50%
d. 100%
8. How do you confirm that light coming from the sky is partially polarized?
9. How do sunglasses reduce the glare of intense light?
10. Does the polarizing angle for a transparent medium depends upon the wavelength of light? Explain with appropriate mathematical expression.
11. How would you obtain plane polarized light by reflection? A ray of light incident on a glass plate at an angle of 33° with its surface. If the reflected and refracted light are perpendicular to each other, what is the index for refraction of glass? What is the angle of refraction?
[Ans: 1.539; 33 ${ }^{\circ}$]
12. Two polaroids are perpendicular to each other and the final transmitted intensity is zero. What will be the effect on the intensity of light transmitted through a third polaroid placed between the previous two polaroids bisecting the angle between them?
13. How would you show that light waves are transverse in nature?
[for 2 marks]
14. What does polarization property verify? At what angle of incidence, the reflected ray becomes plane polarized for monochromatic light of wavelength $5896 A^{\circ}$ in air is passed to a transparent medium at which the wavelength becomes $3931 A^{\circ}$?
[Ans: 56.31 ${ }^{\circ}$]
[Hint: $\mu=\tan \theta_{p} \quad \mu=\frac{c}{v} \quad{ }_{a} \mu_{\mathrm{w}}=\frac{\mu_{w}}{\mu_{a}}=\frac{(c / v)_{w}}{(c / v)_{a}}=\frac{v_{a}}{v_{w}}=\frac{\lambda_{a} f}{\lambda_{w} f}$ i.e., $\mu=\frac{\lambda_{a}}{\lambda_{w}}=\tan \theta_{p} \quad$ solve and find θ_{p}.

