path difference $=B N=d \sin \theta \quad[\operatorname{See} \triangle A B N]$
for small θ, path difference $=d \times \theta \ldots \ldots . .[1]$
Also, in triangle $\triangle P C O$,

$$
\begin{equation*}
\tan \theta \approx \theta=\frac{y}{D} . \tag{1}
\end{equation*}
$$

For small angle θ,
$\sin \theta \approx \theta$
and, $\tan \theta \approx \theta$

The point P on the screen will be a point of secondary minima if,

$$
\text { path difference }=\text { even number } \times \frac{\lambda}{2}
$$

[In this case, the slit $A B$ is assumed to be divided into even number of equal partitions.]
$\begin{array}{lll}\text { Or, } & d \times \theta=n \lambda & \cdots \\ \text { Or, } & \theta=n \lambda / d & {[n=1.2 .3 \ldots}\end{array}$
Hence, for $n^{\text {th }}$ secondary minima,

$$
\theta_{n}=n \lambda / d
$$

For $1^{\text {st }}$ secondary minimum: $\theta_{1}=\lambda / d$
For $2^{n d}$ secondary minimum: $\theta_{2}=2 \lambda / d$ and so on.

> In terms of linear distance from central maximum: \qquad
$\rightarrow d \times \frac{y}{D}=n \lambda$
$\therefore y_{n}=n \lambda D / d$ $y_{1}=\lambda D / d$ $y_{2}=2 \lambda D / d$ and so on.

The point P on the screen will be a point of secondary maxima if,

$$
\text { path difference }=\text { odd number } \times \frac{\lambda}{2}
$$

[In this case, the slit $A B$ is assumed to be divided into odd number of equal partitions.]

Or, $\quad \theta=(2 n+1) \frac{\lambda}{2 d} \quad[n=1.2 .3 \ldots]$
Hence, for $n^{\text {th }}$ secondary maxima,
In terms of linear distance from central maximum:

$$
\cdots d \times \frac{y}{D}=(2 n+1) \frac{\lambda}{2}
$$

$$
\theta_{n}=(2 n+1) \frac{\lambda}{2 d}
$$

For $1^{\text {st }}$ secondary maximum: $\theta_{1}=\frac{3 \lambda}{2 d}$
For $2^{n d}$ secondary maximum: $\theta_{2}=\frac{5 \lambda}{2 d}$
and so on.

$$
\begin{aligned}
\therefore \boldsymbol{y}_{\boldsymbol{n}} & =(2 \boldsymbol{n}+\mathbf{1}) \frac{\lambda \boldsymbol{D}}{2 \boldsymbol{d}} \\
y_{1} & =\frac{3}{2} \frac{\lambda D}{d} \\
y_{2} & =\frac{5}{2} \frac{\lambda D}{d} \quad \text { and so on. }
\end{aligned}
$$

Figure: Intensity variation graph in Fraunhofer Diffraction

