Width of central maximum:

1. Angular width:

The angle subtended between $1^{\text {st }}$ secondary minima on either side of central maxima is the angular width of central maxima.

Angular width of central maxima, $\theta=2 \theta_{1}$

$$
\theta=2 \frac{\lambda}{d}
$$

2.Linear width:

The linear distance between $1^{\text {st }}$ secondary minima on either side of central maxima is the linear width of central maxima.

Linear width of central maxima, $L=2 y_{1}$

$$
L=2 \frac{\lambda D}{d}
$$

In interference pattern:
Angular width of central maxima $=\frac{\lambda}{d}$ and Linear width of central maxima $=\frac{\lambda D}{d}$.
$>$ The width of central maxima in diffraction fringe band is double of that in interference fringe band.

Secondary minima:

Secondary maxima:

Angular position: $\boldsymbol{\theta}_{n}=\frac{n \lambda}{d} \quad n=1,2,3,4, \ldots$
Angular position: $\theta_{n}=(2 n+1) \frac{\lambda}{2 d}$
Linear position: $y_{n}=\frac{n \lambda D}{d}$
Linear position: $y_{n}=(2 n+1) \frac{\lambda D}{2 d}$
$>$ Angular width of central maximum $=2 \frac{\lambda}{d} \quad$ (in radians)
Linear width of central maximum $=2 \frac{\lambda D}{d}$
$\checkmark \quad$ Width of central maxima is affected due to:
i. Change in width of slit [if slit width is doubled, the width of central maxima will be halved]
ii. Change in wavelength of light [is directly proportional to wavelength]
iii. Insertion of certain transparent medium in between the slit and the screen.
[when the whole apparatus is immersed in water, the width of central maxima decreases due to decrease in wavelength of light in water.]
\checkmark Angular width is independent of D, while linear width depends upon D.
\checkmark In practice, the screen is placed at the focal plane of a converging lens placed just after the slit.
i.e., (distance between slit and screen) $D=f($ focal length of convrx lens)).

1. The angular width of the central bright maximum in Fraunhofer's Diffraction pattern of a slit width $12 \times 10^{-5} \mathrm{~cm}$ when the slit is illuminated by monochromatic light of wavelength $6000 \mathrm{~A}^{\circ}$ is:
a. 30°
b. 60°
c. 80°
d. 90°
2. Estimate the angular separation between first order maximum and third order minimum of the diffraction pattern due to single slit of width 1 mm , when light of wavelength 600 nm is incident normal on it.
[Ans: $9 \times \mathbf{1 0}^{-4}$ rad.]
