$$
\begin{gathered}
\text { Or, } \quad(a+b) \sin \theta=n \lambda \\
\text { For } \mathrm{n}^{\text {th }} \text { order maxima: }(a+b) \sin \theta_{n}=n \lambda \quad \text { This is Grating Equation. }
\end{gathered}
$$

Diffraction grating:
$N=$ number of lines per unit length
Grating element: $(\boldsymbol{a}+\boldsymbol{b})=\frac{1}{N}$
Working formula for diffraction grating: $(\boldsymbol{a}+\boldsymbol{b}) \boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}=\boldsymbol{n} \boldsymbol{\lambda}$
$>$ For highest number of diffraction maxima:

$$
\begin{aligned}
& \text { Put } \theta=90^{\circ} \text { i.e., } \sin \theta=1 \\
& \text { Then find: } \boldsymbol{n}_{\text {max }}=\frac{(\boldsymbol{a}+\boldsymbol{b})}{\lambda} \quad\left[\because \boldsymbol{\theta}_{\max }=\mathbf{9 0}^{\circ}\right]
\end{aligned}
$$

Recall your memory!! 1 inch $=2.54 \mathrm{~cm}$

$$
\begin{aligned}
& n=0, \text { for central maximum } \\
& n=1, \text { for first order maxima } \\
& n=2, \text { for second order maxima. } \\
& \quad \text { and so on. }
\end{aligned}
$$

1. A plane transmission grating having 500 lines per mm is illuminated normally by light source of 600 nm wavelength. How many diffraction maxima will be observed on a screen behind the grating?
[Ans: 3]
2. A parallel beam of sodium light of wavelength $5893 A^{o}$ is incident normally on a diffraction grating. The angle between two first order spectra on either side of the normal is 28^{0}. Find the number of ruling lines per mm on the grating. [Ans: 406 lines $/ \mathrm{mm}$]
3. Parallel beam of light from a source is incident normally on plane diffraction grating. If the angle of diffraction for first order is 30°, find the grating element and number of lines per mm of the grating, considering wavelength of incident beam is $5893 \mathrm{~A}^{\circ}$.

$$
\text { [Ans: } \left.1.1786 \times 10^{-6} \mathrm{~m}, 848 \text { lines } / \mathrm{mm}\right]
$$

Resolving Power

Definition:

The resolving power of an optical instrument is defined as its ability to separate (distinguish) the images of two nearby point objects so that they can be distinctly seen.

Mathematically,

$$
\text { Resolvimg power }=\frac{1}{\text { limit of resolution }}
$$

Resolving power do not have any unit.
\# Limit of resolution: the distance between two points in the object that are just resolved in the image.
> The normal human eye can see two objects distinctly (as separate and clearly) only if angle subtended by them at the eye is greater than $1^{\prime}\left(=(1 / 60)^{o}\right.$.

If the angle subtended by two distinct objects is less than 1^{\prime}, they may be seen as separate from each other by using optical instruments like: lens, telescope, microscope etc.

1. Resolving Power of microscope $=\frac{2 \mu \sin \theta}{\lambda}$

Where, $\mu=$ R.I.of medium between the object and objective lens
$\theta=$ semi - vertical angle [see given figure] -.-.-......................
And, $\mu \sin \theta$ is called as Numerical Aperture of microscope.

