d. A 550 N physics student stands on a bathroom scale in an elevator. As the elevator starts moving the scale reads 450 N . Draw free body diagram of the problem and find the magnitude and direction of the acceleration of the elevator.
8. Find the torque of a force $2 \hat{\imath}+3 \hat{\jmath}-4 \hat{k}$ about the origin which acts on a particle whose position vector is $\hat{\imath}+2 \hat{\jmath}-\hat{k}$.
9. Two people are carrying a uniform wooden board that is 3 m long and weights 160 N if one person applies an upward force equal to 60 N at one end, at what point does the other person lift?
10. Free body diagram is a graphical illustration used to visualize the applied forces, using free body diagram technique solve the following problems,
a. A chair of mass 10 kg is sitting on a horizontal floor which is not frictionless. You push on the chair with a constant force of magnitude 30 N which is directed at an angle of 30° below the horizontal and chair slides along the floor. Draw free body diagram and calculate normal force that the floor exerts on the chair.
b. In a physics lab experiment, a 6 kg box is pushed across a flat table by a horizontal force F .
i. If the box is moving at a constant speed of $0.35 \mathrm{~m} / \mathrm{s}$ and the coefficient of kinetic friction is 0.12 , What is the magnitude of F ?
ii. If the box is speeding up with a constant acceleration of $0.18 \mathrm{~m} / \mathrm{s}^{2}$, what will be the magnitude of F ?
c. Two masses 10 kg and 15 kg are connected at the two ends of a light inextensible string that passes over a frictionless pulley. Using free body diagram method, find the acceleration of masses and the tension in the string, when the masses are released.

d. A block of mass m_{1}, is lying on frictionless plane inclined at an angle of 30°. It is connected to another block of mass m_{2}, with the help of a string passing over a pulley. If $m_{1}=6 \mathrm{~kg}$ and $m_{1}=8 \mathrm{~kg}$ then calculate the tension and acceleration of the each block.

e. Two bodies of masses 4 kg and 5 kg are tied to a string as shown in figure. If the table and pulley both are smooth, find the acceleration of the masses and the tension in the string.
f. A block of mass 10 kg is kept on a rough inclined plane as shown in figure. A force of $3 N$ is applied on the block. The coefficient of static friction is 0.6 . What should be the minimum value of force P , such that the block does not move downward?

Some additional short questions:

a. What is equilibrium? Write the conditions for a body to be in stable equilibrium.
b. Can a body be in equilibrium if it is in motion? Explain.
c. Why does a man carry a load on his back lean forward?
d. Why horse is more stable than a man?
e. What is moment of force? Why is it difficult to open and close a door by applying force near a hinge?
f. Write down the differences between centre of gravity and centre of mass.

