CHAPTER: 3 KINEMATICS EXAM STYLE QUESTIONS

MCQs:

1.	Which of the following is correct?
	a. distance = displacement c. distance > displacement
	b. $distance < displacement$ d. $distance \ge displacement$
2.	The displacement of the particle is described by the equation, $s = (2t^3 + 3)m$, its instantaneous
	acceleration at $t = 2sec$ is,
	a. $12m/s^2$ b. $24m/s^2$ c. $19m/s^2$ d. $27m/s^2$
3.	The displacement of a body is directly proportional to cube of time elapsed. The magnitude of acceleration
	of the body is.
	a. Increasing with time b. Decreasing with time c. Constant d. Zero
4.	A bus travels the first one-third of distance with speed of $10km/hr$, the next one third at $20 km/hr$ and
	last at $60 km/hr$. Its average velocity is.
	a. $16km/hr$ b. $18km/hr$ c. $48km/hr$ d. $30km/hr$
5.	If a bullet loses half of its velocity on penetrating 3cm in a wooden block, then how much will it penetrate
	more before coming to rest?
	a 1cm b 2cm c 3cm d 4 cm
6	The distance travelled by a car along a straight line is $r = 12t + 3t^2 - 2t^3$ where x is in meters and t in
0.	seconds. The velocity of the car at the start will be
	$a 7m/s$ $b 9m/s$ $c 12m/s$ $d 16m/s$ t^{\dagger}
7	The displacement time graph of a moving particle is shown in the figure. The
1.	instantaneous velocity of the particle is negative at the point $\mathbf{E} = \mathbf{E}$
	a C b D c E d E
8	In the given $u = t$ graph the distance travelled by the body in 5 seconds will be
0.	a 20m b 40m c 80m d 100m
9	A particle covers half of its total distance with speed $30km/hr$ and the rest half
۶.	distance with speed 20km/hr. Its average speed during the complete journey is
	a $25km/hr$ b $24km/hr$ c $50km/hr$ d $10km/hr$
10	A ball is thrown vertically downward with a velocity of $20m/s$ from the top of a tower. It hits the ground
10.	after some time with a velocity of $80m/s$. The height of the tower is
	a $300m$ b $320m$ c $340m$ d $360m$
11	The trajectory of projectile is given by the equation $y = \sqrt{3}x - 75x10^{-4}x^2$ where x and y are in meters.
11.	The trajectory of projectile is given by the equation $y = \sqrt{3x} = 7.5x10^{-1}x^{-1}$, where x and y are in meters, $a = 30^{0}$ b 60^{0}
12	A boy standing at the top of a tower of 20m height drops a stone. Assuming $a = 10m/s^2$ the velocity
12.	A boy standing at the top of a tower of 20 <i>m</i> height drops a stone. Assuming $y = 10m/3$, the velocity with which it hits the ground is
	$a_{\rm s} 5m/s$ b $10m/s$ c $20m/s$ d $40m/s$
13	The displacement-time graphs of two moving particles make angles of 30 ⁰ and 45 ⁰
15.	with the x-axis as shown in figure. The ratio of their respective velocity is:
0	$\sqrt{2}$, 1 b 1, 1 c 1, 2 d 1, 2
a. 11	$\sqrt{5.1}$ 0.1.1 0.1.2 0.1. $\sqrt{5}$
14.	The horizontal range and the maximum neight of a projectile are equal. The angle of 0^{-1} time \rightarrow
	-1(1)
	a. $\theta = \tan^{-1}(\frac{1}{4})$ b. $\theta = \tan^{-1}(4)$ c. $\theta = \tan^{-1}(2)$ d. $\theta = \tan^{-1}(1)$
15.	A missile is fired for maximum range with an initial velocity of $20m/s$. The range of missile is,
	a. 20 <i>m</i> b. 40 <i>m</i> c. 50 <i>m</i> d. 60 <i>m</i>
16.	The speed of projectile at maximum height is half of its initial speed. The angle of projectile is,
	a. 15° b. 30° c. 45° d. 60°
17.	If a particle is projected at an angle 45°, then relation between range and maximum height is,
	a. $R = 4H$ b. $4R = H$ c. $2H = R$ d. None
18.	A boat goes across a river with velocity $12km/hr$. The magnitude of its resultant speed in flowing water
	is $13km/hr$. The velocity of water flow in the river is,
	a. $1km/hr$ b. $5km/hr$ c. $7km/hr$ d. $9km/hr$