SAQs:

- 1. a. If the displacement of the particle is proportional to the square of time. State the nature of motion of the body.
 - b. Define projectile. A projectile is fired at an angle θ with the horizontal. Show that the path followed by projectile is a parabola. Also derive expression for the maximum height, time of flight and horizontal range.
- 2. a. If the distance travelled by a body in time 't' is given by $x = at + bt^2$, then what will be the acceleration of the body?
 - b. A batter hits a baseball so that it leaves the bat with an initial speed 37m/s at an angle of 53° with the horizontal. Find the position of the ball and the magnitude and direction of velocity after 2 seconds. Treat the baseball as a projectile. [Ans: 24.23m/s, 23.21°]
- 3. a. Can a body have a constant speed but changing velocity? Explain with example.
 - c. A stone on the edge of a vertical cliff is kicked so that its initial velocity is 9m/s horizontally If the cliff is 200m high, calculate, time taken by stone to reach the ground and how far from the cliff the stone will hit the ground? [Ans: 6.32sec, 56.92m]
- 4. a. Find the angle of projection at which the horizontal range and maximum height of a projectile are equal.
 - b. Prove these equations graphically: a) $s = ut + \frac{1}{2}at^2$ b) $v^2 = u^2 + 2as$
- 5. a. Draw displacement time graph for two cases: uniform velocity and non-uniform velocity.
 - c. Show that the path of a projectile projected horizontally from top of the tower is parabolic. Also calculate time of flight and horizontal range travelled by the projectile.
- 6. a. Show that there are two angles of projection of a projectile for the same horizontal range.
 - c. A car travelling with a speed of 15m/s is braked and is slowed down with uniform retardation. It covers a distance of 88m as its velocity reduce to 7m/s. If the car continuous to slow down with same rate, how far will the car travel becoming to rest. [Ans: 24.5m]
- 7. a. A body is thrown vertically upward with initial velocity of 40 m/s. Draw the v-t diagram for the body.
 - b. A body falls freely from top of a tower. During the last second of its fall, it falls through 25m. Find the height of the tower. [Ans: 45m]
- 8. a. What does the area under velocity time graph represents, what about area under acceleration time graph?
 - b. An object is dropped from the top of the tower of height 156.8m and at the same time another object is thrown vertically upward with the velocity of 78.1m/s from the foot of the tower, when and where the object meet? [Ans: 2 sec and 20m below top]
- 9. a. What would be the effect on maximum range in doubling the initial velocity of a projectile?

b. A projectile is fired from the ground level with a velocity of 500m/s at 30° to horizon. Find the horizontal range, and greatest height to which it rises. What is the least speed with which it can be projected in order to achieve the same horizontal range? [Ans: 21651m, 3125m, 464m/s]

10. a. What would be the effect on maximum range in doubling the initial velocity of a projectile? b. A projectile is launched with an initial velocity of 30m/s at an angle of 60^0 above the horizontal. Calculate the magnitude and direction of its velocity 5sec after launch.

[Ans: 28.3m/s and 58° from horizontal]

11. a. A bomb is to be dropped from a moving helicopter on a target on the ground. Explain how it can hit the target.

b. Two tall buildings are 40m apart. With what speed must a ball be thrown horizontally from a window 120m above the ground in one building so that it will enter a window 40m from the ground in the other building? [Ans: 10m/s]

c. A car is running on a straight road with accelerating motion. It travels 10m distance in 3rd seconds after the start and 12m in 5th second. Now, what distance does it travel in 10th second after its start. [Ans: 17m]
12. a. Under what condition is the average velocity equal to the instantaneous velocity?

b. A stone is thrown horizontally with a speed of 20m/s from height 100m above the ground, find: its time of flight, Horizontal range, velocity after 2 seconds, velocity with which it hits the ground, position of stone after 2 seconds.