$$
\begin{aligned}
& \Rightarrow \frac{\mu}{\mu_{0}}=(1+\chi) \\
& \Rightarrow \mu_{r}=(1+\chi)
\end{aligned}
$$

This is the required relation between relative permeability \& magnetic susceptibility.

Classification of magnetic substance. (Imp)

Magnetic substances are divided into three categories, i.e.

1. Diamagnetic Material
2. Paramagnetic Material
3. Ferromagnetic Material

Diamagnetic Material	Paramagnetic Material	Ferromagnetic Material
Such type of magnetic material which are feebly (weakly) magnetized in a direction opposite to that of applied magnetic field.	Such type of magnetic material which are feebly (weakly) magnetized in the same direction of applied magnetic field.	Such type of magnetic material which are strongly magnetized in the same direction of applied magnetic field.
They are feebly repelled by a magnet.	They are feebly attracted by a magnet	They are strongly attracted by a magnet.
They loss their magnetic properties on removal of external magnetic field.	They loss their magnetic properties on removal of external magnetic field.	They do not lose their magnetic properties on removal of external magnetic field.
The magnetic properties of diamagnetic substances is independent to the temperature. (Does not follows curie law)	The magnetic properties of paramagnetic substance decrease with increase in temperature. $\left\{\right.$ Follows Curie law i.e. $\left.\left(\chi \propto \frac{1}{T}\right)\right\}$	The magnetic properties of ferromagnetic substance decrease with increase in temperature. \{ (Follows Curie-Weiss law: $\chi \propto \frac{1}{T-T_{c}}$ \}
Relative permeability: $0 \leq \mu_{r}<1$, less than one	Relative permeability: Slightly greater than one.	ve permeability: μ
Susceptibility: $-1 \leq \chi<0$	Susceptibility: Positive and small	Susceptibility: $\chi \gg 1$
$\Theta \theta \theta \theta$		
$\bigcirc 0 \bigcirc 00 \Theta \Theta \Theta \Theta \Theta$	magnetco field acplied	
e.g. Antimony, Bismuth, Copper	e.g. Magnesium., Aluminum	e.g. Iron, Cobalt, Nickel

Curie law:

The Intensity of magnetization (I) of paramagnetic substance depends on the magnetic induction (B_{0}) produced by the magnetizing field H in free space and absolute temperature (T) of the material, i.e.

$$
\begin{align*}
& I \propto B_{0}--------(1) \\
& I \propto \frac{1}{T}-------(2) \tag{2}
\end{align*}
$$

Combining eq. (1) and (2)

