> Avogadro's hypothesis: 235 gram of $U - 235 = 6.023 \times 10^{23} atoms$ 6.023×10^{23} atoms of U - 235 = 235 grams $1 \text{MeV} = 1.6 \times 10^{-13} \text{J}$ ** $1 eV = 1.6 \times 10^{-19} J$ $1MW = 10^{6}W$ ** 1. The energy liberated in the fission of a single Uranium -235 atom is 3.2×10^{-11} J. Calculate the power production corresponding to the fission of 1Kg of Uranium per day. Assume Avogadro's constant as 6.02x10²³mole⁻¹. [] Hint: $Power = \frac{Total \, energy}{r}$ Total energy = Number of atoms \times energy due to single atom 2. The energy liberated in the fission of a single Uranium -235 atom is 3.2×10^{-11} J. Calculate the power production corresponding to the fission of 1.5Kg of Uranium per day. [] 3. Assuming that about 200MeV energy is released per fission of ${}_{92}U^{235}$ nuclei. What would be the mass of U²³⁵ consumed per day in the fission reactor of power 1MW approximately? Hint: *Total energy* = *Power* \times *time* 4. A city requires 10⁷Watts of electrical power on the average. If this is to be supplied by a nuclear reactor of efficiency 20%. Using 92U²³⁵ as the fuel source, calculate the amount of fuel required per day. (Energy released per fission ${}_{92}U^{235}=200 MeV$). Solution: Given, Efficiency (η) = 20% = $\frac{20}{100}$ Output Power (P_{out}) = 10⁷ watt Time(t) = 1 day = 86400 secondsEnergy liberated (Q) = 200 MeV $= 200 \text{ x} (10^6) \text{ x} (1.6 \text{ x} 10^{-19} \text{ J})$ $= 3.2 \text{ x} 10^{-11} \text{ J}$ We Know, $\eta = \frac{P_{out}}{P_{in}}$ $P_{in} = \frac{P_{out}}{\eta}$ $P_{in} = \frac{10^7}{\frac{20}{(\frac{20}{100})}}$ or, or, $P_{in} = 5 \times 10^7$ watt ... (1) or, $P_{in} = \frac{total \ nergy \ released \ (E)}{E}$ Also, time taken(t) Number of $atoms(N) \times liberated$ energy(Q) $P_{in} =$ or, time taken(T) $5 \times 10^7 = \frac{N \times 3.2 \times 10^{-11}}{86400}$ or, $N = 1.35 \times 10^{23}$ atoms or, Now, 6.023×10^{23} atoms of U²³⁵ = 235 gm 1 atom of U²³⁵= $\frac{235}{6.023 \times 10^{23}}$ gm or, 1.35×10^{23} atoms of U²³⁵ = $\frac{235}{6.023 \times 10^{23}} \times 1.35 \times 10^{23}$ gm :. = 52.67 gm= 0.05267 Kg