Electron

1. a. What is specific charge? Compare the specific charge of electron and proton. 2
b. An electron and a proton enter into a transverse electric field with same velocity. Which particle will have larger deflection.
c. The Fig. shows two parallel metal plates, 44 mm apart, which have p. d. of 110 V applied across them, with the electron beam in it. Find the
i. Electric filed strength between the plates.
ii. The magnitude of the force on the electron when it
is between the plates.

d. A beam of electrons, moving with velocity of $10^{7} \mathrm{~m} / \mathrm{s}$, enters midway $\quad \frac{1}{\bar{\Xi}}$ between two horizontal parallel plates in the direction parallel to the plates which are 5 cm long and 2 cm apart and have a pd of V volts between them. Calculate V if the beam is deflected so that it just grazes the edge of the plate.
[90.90 V] 2
e. Two plane metal plates 4 cm long are held horizontally 3 cm apart in a vacuum, one being vertically above the other. The upper plate is at a potential of 300 V and the lower is earthed. Electrons having a velocity of $1 \times 10^{7} \mathrm{~ms}^{-1}$ are injected horizontally midway between the plates and in a direction parallel to the 4 cm edge. Calculate the vertical deflection of the electron beam as it emerges from the plates. e / m for electron $=1.8 \times 10^{11} \mathrm{C} / \mathrm{kg}$. [0.0144m] 2
2. a. Write the vector form of Lorentz force. Explain why photon passes without deviation in the electric and magnetic fields?
b. A proton of energy 10 eV is moving in a circular path of radius 11 cm , in a plane at right angles to a uniform magnetic field. Determine the value of the flux density.
(Mass of a proton $=1.67 \times 10^{-27} \mathrm{Kg}, e=1.6 \times 10^{-19} \mathrm{C}$)
c. A beam of electron is accelerated from rest through a potential difference of 2000 V and then enters a uniform magnetic field which is perpendicular to the direction of the proton beam of the flux density is 0.4 T . Calculate the radius of the path which the beam describes.
[Electron mass $=9.1 \times 10^{-3} \mathrm{~kg}$, electronic charge $\left.=-1.6 \times 10^{-19} \mathrm{C}\right][\mathbf{0 . 0 1 6 2} \mathrm{m}] \quad 2$
d. In the ionosphere electron executes 1.4×10^{6} revolutions in a second. Find the strength of the magnetic flux density in this region. (Specific charge of electron $1.8 \times 10^{11} \mathrm{C} / \mathrm{Kg}$) $\quad 2$
e. In Thomson's experiment, voltage across the plates is 50 V and distance between them is 3 cm . The magnetic field applied to make the beam undeflected is 10 Tesla, what is the velocity of the beam?
f. An electron beam passes through a magnetic field 0 f $2 \times 10^{-3} \mathrm{~T}$ and an electric $3.4 \times 10^{4} \mathrm{~V} / \mathrm{m}$ both acting simultaneously.
i. If the path of the electron remains undeflected, calculate the speed of electrons.
ii. If the electric field is removed, what will be the radius of the circular path?

Millikan's oil drop experiment gives the idea of quantization of charge
a. Explain what is meant by quantization of charge.

1
b. In a Millikan's oil drop experiment, a drop is observed to fall with a terminal speed $1.4 \mathrm{~mm} / \mathrm{s}$ in the absence of electric field. When a vertical electrical field of $4.9 \times 10^{5} \mathrm{~V} / \mathrm{m}$ is applied, the droplet is observed to continue to move downward at a lower terminal speed of $1.21 \mathrm{~mm} / \mathrm{s}$. calculate the charge on the drop. Density of oil $=750 \mathrm{~kg} / \mathrm{m}^{3}$, viscosity of air $=$ 1.81×10^{-5}, density of air $=1.29 \mathrm{~kg} / \mathrm{m}^{3}$.
$\left[5.21 \times 10^{-19} \mathrm{C}\right] \quad 2$
c. In a Millikan's oil drop experiment, an oil drop of weight $1.5 \times 10^{-14} \mathrm{~N}$ is held stationary between plates 10 mm apart by applying a p.d. of 470 V between the plates. Calculate the charge on the oil drop.

