

a. What is specific charge? Compare the specific charge of electron and proton. 2	
b. An electron and a proton enter into a transverse electric field with same velocity. Wh	ich
particle will have larger deflection. 2	
c. The Fig. shows two parallel metal plates, 44mm apart, which have p. d.	
of 110V applied across them, with the electron beam in it. Find the	
i. Electric filed strength between the plates.	
ii. The magnitude of the force on the electron when it	mm
is between the plates. 1	
d. A beam of electrons, moving with velocity of 10^7 m/s, enters midway	
between two horizontal parallel plates in the direction parallel to the plates which are 5cm lo	ong
and 2cm apart and have a pd of V volts between them. Calculate V if the beam is deflected	so
that it just grazes the edge of the plate. [90.90 V] 2	
e. Two plane metal plates 4 cm long are held horizontally 3 cm apart in a vacuum, one bet	ing
vertically above the other. The upper plate is at a potential of 300 V and the lower is earth	ed.
Electrons having a velocity of 1x107 ms ⁻¹ are injected horizontally midway between the pla	tes
and in a direction parallel to the 4 cm edge. Calculate the vertical deflection of the electric	ron
beam as it emerges from the plates. e/m for electron = 1.8×10^{11} C/kg. [0.0144m] 2	
2. a. Write the vector form of Lorentz force. Explain why photon passes without deviation in	the
electric and magnetic fields?	2
b. A proton of energy 10eV is moving in a circular path of radius 11 cm, in a plane at right	ght
angles to a uniform magnetic field. Determine the value of the flux density.	2
(Mass of a proton = $1.67 \times 10^{-27} Kg$, $e = 1.6 \times 10^{-19} C$)	
c. A beam of electron is accelerated from rest through a potential difference of 2000V a	ind
then enters a uniform magnetic field which is perpendicular to the direction of the pro-	ton
beam of the flux density is 0.4 T. Calculate the radius of the path which the beam describ	es.
[Electron mass = $9.1 \times 10^{-3} kg$, electronic charge = $-1.6 \times 10^{-19}C$] [0.0162m]	2
d. In the ionosphere electron executes 1.4×10^6 revolutions in a second. Find the strength	of
the magnetic flux density in this region. (Specific charge of electron $1.8 \times 10^{11} C/Kg$)	2
e. In Thomson's experiment, voltage across the plates is 50 V and distance between them i	s 3
cm. The magnetic field applied to make the beam undeflected is 10 Tesla, what is	the
velocity of the beam?	2
f. An electron beam passes through a magnetic field 0f 2×10^{-3} T and an electric 3.4×10^{4} V	/m
both acting simultaneously.	
i. If the path of the electron remains undeflected, calculate the speed of electrons.	2
ii. If the electric field is removed, what will be the radius of the circular path?	2
3. Millikan's oil drop experiment gives the idea of quantization of charge.	
a. Explain what is meant by quantization of charge.	1
b. In a Millikan's oil drop experiment, a drop is observed to fall with a terminal spe	eed
1.4mm/s in the absence of electric field. When a vertical electrical field of 4.9×10^5 V/m	ı is
applied, the droplet is observed to continue to move downward at a lower terminal speed	lof
1.21 mm/s. calculate the charge on the drop. Density of oil = 750kg/m ³ , viscosity of ai	r =
1.81×10^{-5} , density of air = 1.29 kg/m ³ . [5.21×10 ⁻¹⁹ C] 2	
c. In a Millikan's oil drop experiment, an oil drop of weight 1.5×10 ⁻¹⁴ N is held stationa	ary
between plates 10mm apart by applying a p.d. of 470V between the plates. Calculate	the
charge on the oil drop.	2

1.