c.	No heat	engine l	nas efi	ficiency	of	unity. Ju	ıst it.
		0		_		2	

d. What is Carnot engine? On what factor does the efficiency of Carnot's engine depend? 2

2

2

3

- e. The efficiency of all engine is less than that of Carnot's engine. Justify it.
- f. A Carnot engine whose low temperature reservoir is at $27^{\circ}C$ has an efficiency of 25 %. In order to increase efficiency to 50%, how much the temperature of the high temperature reservoir be increased if the temperature of low temperature reservoir remains constant. 3
- g. The source of reservoir of Carnot engine is at a temperature of 400 K and takes 400 J of heat and rejects 20 J of heat to the sink reservoir in each cycle. What is the efficiency of the engine and temperature of sink? [Ans: 95%, 42°C] 3
- h. The efficiency of a Carnot cycle is 15%. If on reducing the temperature of sink by 65°C, the efficiency becomes double. Determine the initial and final temperature between which the cycle is working.
 [Ans: 433.3K, 368.33K] 3
- i. A carnot engine takes 10³ Cal of heat from a hot reservoir at 227°C and rejects heat to a reservoir at 27°C. How much work is done by it? [1680 J] 2
- j. Explain the working of Carnot engine with the help of PV diagram.
- k. A diesel engine performs 2500J of mechanical work and discards 4000J of heat each cycle. How much heat must be supplied to the engine each cycle? What is the thermal efficiency?
 [38.46%] 3
- 2. a. Can a room be cooled by leaving the door of an electric refrigerator open in a closed room? 2
- b. State the law of refrigeration. Refrigerator transfers heat from cold body to hot body. Does this violate the second law of thermodynamics?
 c. Why will a refrigerator with a fixed amount of food consume more energy in a warm room
- than in a cold room?
- d. Why must a room air-conditioner be placed in a window? Why cannot it be set on the floor and plugged in?
- e. In a refrigerator, heat from inside at 277K is transferred to a room at 300K. Calculate the heat delivered to the room for each joule of electrical energy consumed. Also, find its efficiency and coefficient of performance. [Ans: 13 J]
- 3. a. What is calorific value? Write its unit.

	b. The calorific value of petrol is $11.4 \times 10^3 cal/grm$. A heat engine consumes 10 l	cg of			
	petrol in 1 hour. If the power of the engine is 20 KW atts, what is its efficiency?	3			
4.	a. Why is petrol engine called as four stroke engine. Explain the working mechanism of p	petrol			
	engine with the help of PV diagram.	3			
	b. Spark plug is not necessary in diesel engine, why?	2			
	c. Petrol engine is less efficient than diesel engine. Explain, why?	2			
	d. Explain the working of diesel engine with the help of PV diagram.	3			
	e. Is it possible to construct a heat engine that create no thermal pollution? Explain?	2			
5.	a. What is entropy? Write the mathematical form of change in entropy.	2			
	b. Express first law of thermodynamics in terms of entropy.	2			
	c. A Carnot engine working between 300K and 600K has a work output of 800J per cycle.				
	What is the amount of heat energy supplied to the engine from source per cycle? [1800J]	2			
	d. Sketch block diagram for heat engine and for refrigerator and hence show that a refrigerator				
	is a heat engine working in reverse direction.	2			