X-ray	
$\frac{1}{2}mv_{max}^{2} = eV = hf_{max} = h\frac{c}{\lambda_{min}}$ $\lambda_{min} = shortest (cut off) wavelength$ $f_{max} = maximum (cut off) frequency$ $V = accelerating Potential$	
Total Power: $P = VI$ $v_{max} = maximum \ velocity \ of \ incident \ e$	lectron
✓ number of electrons striking per second on the target: $\frac{N}{t} = \frac{I}{e}$ $I = tube cur$	rrent
$\frac{1}{2}mv^2 = eV = hf = h\frac{c}{\lambda}$ To find velocity of electron, frequency and wa	velength of X-ray.
Bragg's law: $2dsin\theta = n\lambda$ Here, $d = lattice spacing; crystal spacing; planar spacing [unit \theta = glancing \ angle = 90 - i [unit is \ degree] n = order \ of \ diffraction \ or \ reflection; n = 1,2,3, \dots \dots For first order, n = 1For second order, n = 2 and so on \dots \dots\lambda = wavelength \ of \ x - ray \qquad [unit \ is \ m]$	it is m]
. a. What are X-rays? Describe modern method for the production of X-rays.	3
 c. How can you control the intensity and penetrating power (quality) of X-ray? d. Electrons in X-ray tube is accelerated by <i>p.d. of</i> 10<i>KV</i>. If an electron prod photon on impact with target, what is the minimum wavelength of X-rays? We velocity with which the electron hit the target? e. An x-ray tube works at dc potential difference of 50 KV. Only 0.4% of the electhode rays (electrons) is converted into X-rays and heat is generated in the tar rate of 600 watt. Estimate the current passed into the tube and the number of the striking the target per second. [Mass of electron= 9 × 10⁻³¹Kg, charg 1.6 × 10⁻¹ C.] f. An x-ray tube works at a dc potential difference of 50 KV and the current throug 0.5 mA. Find: i. The number of electrons hitting the target per second. [<i>Ans:</i> 3.12 × 10¹⁵ electron ii. The energy falling the target per second as the KE of electrons. [<i>Ans:</i> 25 Watt iii. The cut off wavelength of x-ray emitted. [<i>Ans:</i> 2.5 × 10 (<i>e</i> = 1.6 × 10⁻¹⁹C, <i>c</i> = 3 × 10⁸ m/s, <i>h</i> = 6.62 × 10⁻³⁴ Js) 	hat is the 2 energy of get at the electrons e of e = 3 gh tube is ns/sec] ts]
 a. State Bragg's law of X-ray diffraction. Explain how this can be used to deter crystal plane spacing. b. Can X-ray diffraction experiment be performed by an ordinary grating? Explain. c. X-rays of wavelength 0.36 A⁰ is diffracted by a crystal at a glancing angle of 4 the spacing of the atomic planes in the crystal. d. X-rays are incident on a crystal of crystal spacing 3.08 × 10⁻⁸ cm such that f reflection takes place at glancing angle 12⁰. Calculate the glancing angle for seco maximum. e. Can Bragg's law be verified with the yellow light? 	3 2 4.8 ⁰ . Find 2 irst order

Radioactivity		
Activity (A) = Rate of distegration $\left(\frac{dN}{dt}\right)$	• Decay Law: $A = \lambda N$	
$\frac{Activity(A) = Rate of alstegration(\frac{1}{dt})}{dt}$	 Decay Equation: 	
Units of activity:	Number: $N = N_o e^{-\lambda t}$ $t = \frac{1}{\lambda} \ln \left(\frac{N_o}{N}\right)$	
1. <u>Curie</u> $1Ci = 3.7 \times 10^{10} dis/sec$		
2. <u>Rutherford:</u> $1Rd = 10^6 dis/sec$	Activity: $A = A_o e^{-\lambda t}$ $t = \frac{1}{\lambda} \ln \left(\frac{A_o}{A}\right)$	
3. Becquerel: $1Bq = 1 dis/sec$		
$N_o = initial number of atoms$	$\frac{\text{mass:} m = m_o e^{-\lambda t} t = \frac{1}{\lambda} \ln\left(\frac{m_o}{m}\right)}{\frac{N}{N_o} = \left[\frac{1}{2}\right]^{t/T_{\frac{1}{2}}}}$	
N = current number of atoms = number of undecayed atoms	$N [1]^{t/T_{\frac{1}{2}}}$	
$= number of unaccuyed atoms$ $N_o - N = number of decayed atoms$	$\overline{N_o} = [\overline{2}]$	
Energy is released due to decay.	Half-life: $T_{1/2} = \frac{0.693}{\lambda}$ Mean life: $\overline{T} = \frac{1}{\lambda}$	
Total energy = $(N_o - N) \times single energy$		
Avogadro's Hypothesis:	Types of radioactivity: 1. $\alpha - decay$: New nucleus is formed in	
✓ To convert mass into number	which atomic number decreases by 2 and	
✓ To convert number into mass.	mass number decreases by 4.	
Example: for C^{14}	2. β -decay: New nucleus is formed in	
$14 gram = 6.023 \times 10^{23} atoms$ And	which atomic number increases by 1 and	
$6.023 \times 10^{23} atoms = 14 grams$	mass number remains constant. 3. $\underline{\gamma} - \underline{decay}$: No new nucleus is formed.	
1 . Willord in an dia adiation 11		
1.a. What is radioactivity? How will you identify alpha beta and gamma radiation by simple experiment?		
b. Heavy unstable nucleus usually decay by emitting an alpha or beta particle why do they not		
usually emit a single proton or neutron?	Simplifiednote.com	
c. A nucleus contains no cleculous, yet jet n ejects them. Explain		
d. How does a daughter nucleus differ from its parent nucleus when it emitsi. alpha particleii. beta particleiii. gamma particle		
e. Define the term decay constant. Write the laws of radioactivity and hence establish decay equation.		
f. What is half-life? How is half-life related to decay constant.		
g. A radioactive sample has a half-life of 8.3×10^4 years. Calculate disintegration constant		
and time taken for 25% of its activity to disappear. [14.42 min] 2 h. Find the half-life of U^{238} , if 1 gram of it emits $1.24 \times 10^4 \alpha$ -particles per second.		
Avogadro's number = 6.025×10^{25} . [4.5 × 10 ⁹ years] 2		
i. Half-life of Ra-226 is 1620 years. Estimate its mass when its activity is 0.5 Ci. [0.52grm] 2		
2. a. If a radioactive nucleus has a half-life of one year, will it be completely decayed at the end		
of two years? Explain.	2	
b. If the half-life period of a radioactive substance is 2 days, after how many days will $1/64$ th		
of the substance be left behind?	[12 days] 2	

- c. If 4 grams of a radioactive material of half-life period of 10 years disintegrates, find out mean life of the given sample. [14.4 years] 2
- d. A radioactive source which has the half-life of 130 days, contain initially 10^{20} atoms and the energy released per disintegration is $8 \times 10^{-13} J$. Calculate the activity of the source after 260 days have elapsed and total energy released during this period. $[6 \times 10^7 J]$ 2
- e. What is radiocarbon dating? How can you estimate the age of ancient object by radiocarbon dating?