- 6. An object of mass 0.5kg is rotated in a horizontal circle by a string in 1mlong. The maximum tension in the string before it breaks is 50N. What is the $[Ans: 1.6 \frac{rev}{s}]$ greatest number of revolutions per second of the object?
- 7. A stone with mass 0.8kg is attached to one end of a string 0.9m long. The string will break if its tension exceeds 600N. The stone is whirled in a horizontal circle, and the other end of the string remains fixed. Find the maximum speed, the stone can attain without breaking string. [Ans: 0.75 $\frac{rev}{s}$]
- 8. A mass of 0.2kg is rotated by a string at a constant speed in a vertical circle of radius 1m. If the minimum tension in the string is 3N, calculate the magnitude of the speed and the maximum tension in the string. [5m/s, 7N]
- 9. At what angle should a circular road be banked so that a car running at 50km/hr be safe to go round the circular turn of 200m radius? [Ans: 5.5°]
- 10. A stone is rotated steadily in a horizontal circle with a period T by a string of length l. If the tension in the string is constant and l increases by 1%, find the percentage change in T. [*Ans*: 0.5%]

Exam Style Questions:

- 1. A boy is operating a remote-controlled toy car on a horizontal circular track, as shown in The track has a radius of 1.8 m and the car travels around the track with a constant speed.
 - a. Explain why the car is accelerating, even though it is travelling at a constant speed.

- b. The car has a mass of $0 \cdot 50 \, kg$. The boy now increases the speed of the car to $6 \cdot 0$ m/s. The total radial friction between the car and the track has a maximum value of 7.0 N. Show by calculation that the car cannot continue to travel in a circular path.
- The car is now placed on a track, which includes a raised section. This is shown in The raised section of the track can be considered as the arc of a circle, which has radius r of 0.85 m. The car will lose contact with the raised section of track if its speed is greater than v_{max} . Show that v_{max} is given by the relationship $v_{max} = \sqrt{rg}$

The diagram shows a stone tied to the end of the length of the string. It is whirled round in a horizontal circle of radius 80 cm. The stone has a mass of 90 g and it completes 10 revolutions in a time of 8.2 s.

a. Calculate.

The time taken for one revolution.

[0.82sec]

[4.2N]

 $[6.13ms^{-1}]$

- The distance travelled by the stone during one revolution (this distance is ii. equal to the circumference of the circle). [5.03m]
- The speed of the stone as it travels in the circle. iii.
- $[47ms^{-2}]$ The centripetal acceleration of the stone.
- v. The centripetal force on the stone.

b. What provides the centripetal force on the stone?

- c. What is the angle between the acceleration of the stone and its velocity?
- 3. A car mass 820kg travels at a constant speed of $32ms^{-1}$ along a banked track. The track is banked at an angle of 200 to the horizontal.
 - a. The net vertical force on the car is zero. Use this to show that the contact force R on the car is 8.56kN.
 - b. Use the answer from (a) to calculate the radius of the circle described by [Ans: 287m] the car.
- weight 20°

Write the one application of the banking of road and write its significance.

