Short Questions:

- 1. Define deforming and restoring force.
- 2. What is elasticity and plasticity? Explain why steel is more elastic than rubber.
- 3. How will you justify that stone is more rigid than iron? (hint: stone offers more opposition to deforming force)
- 4. Why are steel rods embedded in concrete in a house roof? Explain. (hint: to increase Tensile strength)
- 5. Why are bridges declared unsafe after a long use? (hint: After long use the metals used in bridges losses its elastic strength)
- 6. Why are rubbers used as vibration absorbers?
- 7. Compare the mechanical properties of a steel cable, made by twisting many thin wires together, with those of solid steel rod of same diameter. {hint: steel cable made by twisting many thin wires has greater tensile strength (flexibility) and less shear strength (rigidity) but solid steel rod has opposite nature.}
- 8. Will the Young's modulus of elasticity change if the load hanging on it is doubled? Why?
- 9. Explain physical meaning of Poisson's ratio.
- 10. Sketch stress vs Strain graph and explain proportional limit, elastic limit, yield point and breaking stress.
- 11. Sketch the variation of PE with interatomic separation and discuss it?
- 12. What is elastic fatigue? Why do spring balances show wrong readings after being used for a long time?
- 13. What happens to the modulus of elasticity of most of the materials with increase in temperature?
- 14. Two wires A & B have equal lengths and are made of same material. If the diameter of wire A is twice that of a wire B, which wire has the greater extension for a given load?
- 15. Why is spring made of steel but not copper?

Numerical:

- 1. A force of 20N applied to the ends of a wire 4m long produces an extension of 0.24mm. If the diameter of wire is 2mm, calculate the stress on the wire, its strain and the value of the Young's modulus.
- 2. A copper wire and steel wire of same cross sectional area and of length 1m and 2m respectively are connected end to end. A force is applied, which stretches their combined length by 1cm. Find how much each wire is elongated.
- 3. The rubber cord of catapult has a cross sectional area $1mm^2$ and total upstretched length 10cm. It is stretched to 12cm and then released to project a missile of mass 5gm. Calculate the velocity of projection.
- 4. A wire of length 2.5m and area of cross section $1 \times 10^{-6} m^2$ has a mass of 15kg hanging on it. What is the extension produced? How much is the energy stored in the extended wire is Young's modulus of wire is $2 \times 10^{11} Nm^{-2}$.
- 5. What force is required to stretched a steel wire of cross-sectional area $1cm^2$ to double its length?
- 6. Calculate the work done in stretching a steel wire 100cm in length of cross sectional area 0.030 cm² when a load of 100N is slowly applied before the elastic limit is reached.
- 7. A steel cable with cross sectional area $3 cm^2$ has an elastic limit of $2.40 \times 10^8 Pa$. Find the maximum upward acceleration that can be given by a 1200kg elevator supported by the cable if stress is not exceed one-third of the elastic limit.
- 8. The rubber cord of catapult is pulled back until its original length has been doubled. Assuming that the cross sectional of the cord is $2mm^2$ and that Young's modulus for rubber is 10^7Nm^{-2} , Calculate the tension in the cord. If the two arms of the catapult are 6cm apart and the un-stretched length of the cord is 8cm, what is the stretching force?
- 9. The rubber cord of a catapult has cross-sectional area $1mm^2$ and a total un-stretched length 10cm. It is stretched to 12cm and then released to project a missile of mass 5gm. From energy considerations, or otherwise, calculate the velocity of projection taking Young's modulus for the rubber as $5 \times 10^8 Nm^{-2}$.