2.	The moment of inertia of a body about a given axis is 1.2 kg m ² . Initially, the body is at rest. In order to produce a
	rotating kinetic energy of 1500 joules, an angular acceleration of 25 rad/sec ² must be applied about that axis for a
	duration of

- a. 2s
- b. 4s
- c. 8s
- d. 10s
- 3. a. How will you distinguish between a boiled egg and a raw egg by spinning it on a table top?
 - b. In a flywheel, most of the mass is concentrated at the rim. Why?
 - c. Why Spokes are fitted in the bicycle wheel?
 - d. A fan with blades takes longer time to come to rest than without blades. Why?
 - e. How will you distinguish between a boiled egg and a raw egg by spinning it on a table top?
 - f. Find the rotational kinetic energy of a ring of mass 9 kg and radius 3 m rotating with 240 rpm about an axis passing through its center and perpendicular to its plane.

Day-4

- 1. When torque acting upon a system is zero, which of the following will be constant?
 - a. Force b. Linear Momentum c. Angular Momentum
- d. Impulse

- 2. A couple produce
 - a. Purely linear motion
- c. No rotation
- b. Purely rotational motion
 - d. Linear and rotational motion both
- 3. The value of M, as shown, for which the rod will be in equilibrium is:

- a. 1kg
- c. 2kg
- b. 3kg
- d. 4*kg*
- 4. a. Define the terms: torque and couple in rotational dynamics with necessary diagram.
 - b. It is easier to open the cap of a bottle by the help of two fingers, why?
 - c. A constant torque of 500Nm turns a wheel which has a moment of inertia $20kgm^2$ about its centre. Find the angular velocity gained in 2sec and the kinetic energy gained.
 - d. Calculate net torque about point O for the two forces applied as shown in fig. The rod and both forces are in the plane of the page. [Ans: -28N]
 - e. A body is rotating, is it necessary that external torque is acting on it?
 - f. Speed of a body spinning about an axis increase from rest to 100 rev/sec in 5 secs if a constant torque of 20Nm is applied. The external torque is then removed and the body comes to rest in 100 secs due to friction. Calculate the frictional torque.

Day-5

- 1. A body of moment of inertia I rotating about an axis has angular momentum L, the rotational kinetic energy of the body is,
 - a. $\frac{1}{2}$ Ll
- b. $\frac{1}{2}LI^{2}$

- c. $\frac{1}{2I}L^2$
- d. 2LI
- 2. Two bodies have their moment of inertia I and 2I respectively about their axes of rotation. If their kinetic energies of rotation are equal, their angular moment will be in the ratio,
 - a. 2:1
- b. $\sqrt{2}: 1$
- c. 1: $\sqrt{2}$

- d. 1:2
- 3. If a gymnast on a rotating stool with his arms outstretched suddenly lowers his arms
 - a. The angular velocity decreases
 - b. The moment of inertia decreases
 - c. The angular velocity remains constant
 - d. The angular momentum increases
- 4. The principle of conservation of angular momentum is the fundamental law of nature.
 - a. Define angular momentum. Write its vector expression.
 - **b.** State and explain the principle of conservation of angular momentum with suitable example.
 - **c.** A ballet dancer can increase of decrease her spinning rate by using the principle of conservation of angular momentum, how?
 - **d.** The angular velocity of the earth around the sun increases, when it comes closer to the sun, why?