Magnetic Field: Magnetic Effect of Current (Part-1)

✓ Force on a moving charge due to magnetic field:

 $F = Bqv \sin \theta$

- ✓ Lorentz Force: $\vec{F} = q\vec{E} + Bqv \sin \theta$, Vector Representation of lorentz force: $\vec{F} = q[\vec{E} + (\vec{v} \times \vec{B})]$ If $\vec{E} = 0$, Lorentz force $\vec{F} = Bqv \sin \theta$, Then In vector form: $\vec{F} = q[(\vec{v} \times \vec{B})]$
- ✓ Magnetic Force on a Current Carrying Conductor:

 $F = BIl \sin \theta$

&

$$I = v_d e n A$$

✓ Torque on rectangular coil in uniform field:

 $\tau = BINA \cos \theta$ 'or' $\tau = BINA \sin \alpha$ Where θ is angle bet'n plane of coil and \vec{B} and α is angle bet'n area

- \checkmark Current Sensitivity $\frac{\phi}{I} = \frac{BNA}{K}$ Voltage sensitivity $\frac{\phi}{V} = \frac{BNA}{RK}$, R is resistance of coil
- ✓ Hall Voltage: $V_H = \frac{BI}{net}$: $V_H \propto \frac{1}{n}$ Hall coefficient $H_c = \frac{1}{ne}$

$$H_c = \frac{1}{ne}$$

Day-1

1. A particle of mass m and charge q enters a magnetic field B perpendicularly with a velocity v. The radius of the circular path described by it will be,

c. mB/qv

d. mv/Bq

An electron having a charge e moves with velocity v in X- direction. An electric field acts on it in Y- direction? The force on the electron acts in,

a. Positive direction of Y - axis

c. Negative direction of Y - axis

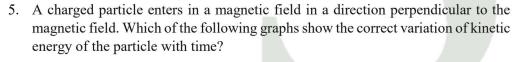
b. Positive direction of Z - axis

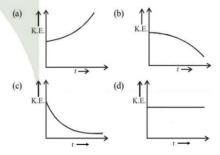
- d. Negative direction of Z axis
- A charged particle moves through a magnetic field in a direction perpendicular to it. Then the

a. Velocity remains unchanged

- b. Speed of the particle remains unchanged
- c. Direction of the particle remains unchanged

d. Acceleration remains unchanged


A charge q is moving with a velocity v parallel to a magnetic field B. Force on the charge due to magnetic field is,


a. Bqv

b. Bq/v

c. Zero

d. $Baysin\theta$

- Fundamental nature of magnetism is the interaction of moving charge.
 - a) What is Lorentz force. Write the vector representation of Lorentz force?
 - b) Derive the expression for force on a moving charge due to magnetic field.
 - c) Can a charged particle move through a magnetic field without experiencing any force?
- d) Can a constant magnetic field set an electron at rest into motion? Explain.
- e) An electron experiences a magnetic force of magnitude $4.60 \times 10^{-15} N$ when moving at an angle of 60° with respect to a magnetic field of magnitude $3.50 \times 10^{-3}T$. Find the speed of the electron. $(Ans: 9.47 \times 10^6 m/s)$
- An electron of KE 10eV is moving in a circular orbit of radius 11cm, in a plane at right angles to a uniform magnetic field. Determine the value of flux density. $(Ans: 9.7 \times 10^{-5}T)$

Day-2

- When a current carrying conductor placed in magnetic field, the conductor experiences magnetic force, derive an expression for force experienced by conductor placed in magnetic field.
 - a) A straight conductor of length 5 cm carries current of 1.5A. The conductor experiences a magnetic force of 4.5x10⁻³N when it is placed in a magnetic field of 0.9 T. What angle the conductor makes with magnetic field? (Ans: 3.8°)
 - b) A copper wire has 10^{29} free electrons per cubic meter, a cross sectional area of $2mm^2$ and carries a current of 5A. Calculate the force acting on each electron if the wire is now placed in a magnetic field of flux density 0.15T which is perpendicular to the wire. $(Ans: 3.75 \times 10^{-24}N)$