Acoustics

1. Ultrasonic, infrasonic and audio waves travel through a medium with speed v_u ,						
$v_i \& v_a$ respectively, then						
a. $v_u = v_i = v_a$ b. $v_u > v_i > v_a$ c. $v_u < v_i = v_a$ d. $v_u < v_i < v_a$						
2. What causes reverberation						
a. interference b. refraction c. diffraction d. reflection						
3. Roaring of lion and buzzing of mosquito differ in						
a. velocity b. frequency c. wavelength d. amplitude						
4. The tones that are separated by three octaves have a frequency ratio of						
a. 3 b. 6 c. 8 d. 16						
[Hint: frequency of n^{th} octave: $f_n = 2^n f$]						
[one octave: one time power of 2 ($f' = 2^1 f$) two octaves: two times power of 2 ($f' = 2^2 f = 4f$)]						
5. Which of the following is the most important factor that helps to recognize a						
person by his voice alone?						
a. intensity b. pitch c. quality d. all are important						
6. You may hear and recognize the voice of your friend behind the wall on an						
account of						
a. diffraction and loudness b. diffraction and quality						
c. interference and quality d. interference and pitch						
7. Sweetness of sound depends upon its						
a. wavelength b. amplitude						
c. frequency d. waveform (periodicity and regularity) or overtones	_					
Pressure amplitude						
Pressure amplitude						
Pressure amplitude 1. If pressure amplitude of a sound wave is tripled, the intensity of sound increases]					
Pressure amplitude 1. If pressure amplitude of a sound wave is tripled, the intensity of sound increases to]					
Pressure amplitude1. If pressure amplitude of a sound wave is tripled, the intensity of sound increases toa. 3 timesb. 6 timesc. 9 timesd. $\sqrt{3}$ times						
Pressure amplitude 1. If pressure amplitude of a sound wave is tripled, the intensity of sound increases to a. 3 times b. 6 times c. 9 times d. √3 times 2. If pressure of a sound wave is doubled, the intensity of sound						
 Pressure amplitude If pressure amplitude of a sound wave is tripled, the intensity of sound increases to a. 3 times b. 6 times c. 9 times d. √3 times If pressure of a sound wave is doubled, the intensity of sound a. increases 2 times b. decreases 2 times 						
Pressure amplitude 1. If pressure amplitude of a sound wave is tripled, the intensity of sound increases to a. 3 times b. 6 times c. 9 times d. √3 times 2. If pressure of a sound wave is doubled, the intensity of sound a. increases 2 times b. decreases 2 times c. increases 4 times d. increases 8 times						
Pressure amplitude 1. If pressure amplitude of a sound wave is tripled, the intensity of sound increases to a. 3 times b. 6 times c. 9 times d. √3 times 2. If pressure of a sound wave is doubled, the intensity of sound a. increases 2 times b. decreases 2 times c. increases 4 times d. increases 8 times 1. (a) How does pressure amplitude change with displacement amplitude? Show						
 Pressure amplitude If pressure amplitude of a sound wave is tripled, the intensity of sound increases to a. 3 times b. 6 times c. 9 times d. √3 times If pressure of a sound wave is doubled, the intensity of sound a. increases 2 times b. decreases 2 times c. increases 4 times d. increases 8 times (a) How does pressure amplitude change with displacement amplitude? Show that pressure wave varies with displacement wave by phase of 90°. 						
 Pressure amplitude If pressure amplitude of a sound wave is tripled, the intensity of sound increases to a. 3 times b. 6 times c. 9 times d. √3 times If pressure of a sound wave is doubled, the intensity of sound a. increases 2 times b. decreases 2 times c. increases 4 times d. increases 8 times (a) How does pressure amplitude change with displacement amplitude? Show that pressure wave varies with displacement wave by phase of 90°. (b) If the intensity of the song at your position is 1.4 x 10⁻⁸ Wm⁻² and 						
 Pressure amplitude 1. If pressure amplitude of a sound wave is tripled, the intensity of sound increases to a. 3 times b. 6 times c. 9 times d. √3 times 2. If pressure of a sound wave is doubled, the intensity of sound a. increases 2 times b. decreases 2 times c. increases 4 times d. increases 8 times 1. (a) How does pressure amplitude change with displacement amplitude? Show that pressure wave varies with displacement wave by phase of 90°. (b) If the intensity of the song at your position is 1.4 x 10⁻⁸ Wm⁻² and frequency is 6kHz, what are the pressure and displacement amplitudes? 						
 Pressure amplitude 1. If pressure amplitude of a sound wave is tripled, the intensity of sound increases to a. 3 times b. 6 times c. 9 times d. √3 times 2. If pressure of a sound wave is doubled, the intensity of sound a. increases 2 times b. decreases 2 times c. increases 4 times d. increases 8 times 1. (a) How does pressure amplitude change with displacement amplitude? Show that pressure wave varies with displacement wave by phase of 90°. (b) If the intensity of the song at your position is 1.4 x 10⁻⁸ Wm⁻² and frequency is 6kHz, what are the pressure and displacement amplitudes? [velocity of sound= 320ms⁻¹; density of air= 2.29Kam⁻³] (3.39 × 1000 km⁻¹) 						
Pressure amplitude1. If pressure amplitude of a sound wave is tripled, the intensity of sound increases toa. 3 timesb. 6 timesc. 9 timesd. $\sqrt{3}$ times2. If pressure of a sound wave is doubled, the intensity of sounda. increases 2 timesb. decreases 2 timesc. increases 4 timesd. increases 8 times1. (a) How does pressure amplitude change with displacement amplitude? Show that pressure wave varies with displacement wave by phase of 90°.(b) If the intensity of the song at your position is $1.4 \times 10^{-8} Wm^{-2}$ and frequency is 6kHz, what are the pressure and displacement amplitudes? [velocity of sound= $320ms^{-1}$; density of air= $2.29Kgm^{-3}$.] (3. 39 × $10^{-3}Pa$, 2, 18 × 10^{-10} m)						
Pressure amplitude1. If pressure amplitude of a sound wave is tripled, the intensity of sound increases toa. 3 timesb. 6 timesc. 9 timesd. $\sqrt{3}$ times2. If pressure of a sound wave is doubled, the intensity of sounda. increases 2 timesb. decreases 2 timesc. increases 4 timesd. increases 8 times1. (a) How does pressure amplitude change with displacement amplitude? Show that pressure wave varies with displacement wave by phase of 90°.(b) If the intensity of the song at your position is $1.4 \times 10^{-8} Wm^{-2}$ and frequency is 6kHz, what are the pressure and displacement amplitudes? [velocity of sound= $320ms^{-1}$; density of air= $2.29Kgm^{-3}$.] (3.39 × $10^{-3}Pa$, 2.18 × $10^{-10} m$)(c) The displacement antipode is called as pressure node. Explain. Find the						
 Pressure amplitude 1. If pressure amplitude of a sound wave is tripled, the intensity of sound increases to a. 3 times b. 6 times c. 9 times d. √3 times 2. If pressure of a sound wave is doubled, the intensity of sound a. increases 2 times b. decreases 2 times c. increases 4 times d. increases 8 times 1. (a) How does pressure amplitude change with displacement amplitude? Show that pressure wave varies with displacement wave by phase of 90°. (b) If the intensity of the song at your position is 1.4 x 10⁻⁸ Wm⁻² and frequency is 6kHz, what are the pressure and displacement amplitudes? [velocity of sound= 320ms⁻¹; density of air= 2.29Kgm⁻³.] (3.39 × 10⁻³Pa, 2.18 × 10⁻¹⁰ m) (c) The displacement antinode is called as pressure node. Explain. Find the intensity of the sound wave in air whose maximum pressure varietion is 2 × 						
 Pressure amplitude 1. If pressure amplitude of a sound wave is tripled, the intensity of sound increases to a. 3 times b. 6 times c. 9 times d. √3 times 2. If pressure of a sound wave is doubled, the intensity of sound a. increases 2 times b. decreases 2 times c. increases 4 times d. increases 8 times 1. (a) How does pressure amplitude change with displacement amplitude? Show that pressure wave varies with displacement wave by phase of 90°. (b) If the intensity of the song at your position is 1.4 x 10⁻⁸ Wm⁻² and frequency is 6kHz, what are the pressure and displacement amplitudes? [velocity of sound= 320ms⁻¹; density of air= 2.29Kgm⁻³.] (3.39 × 10⁻³Pa, 2.18 × 10⁻¹⁰ m) (c) The displacement antinode is called as pressure node. Explain. Find the intensity of the sound wave in air whose maximum pressure variation is 3 × 10⁻²mg. The density of air is a = 1, 20 kg/m³ and the mead of acurat is 						
Pressure amplitude1. If pressure amplitude of a sound wave is tripled, the intensity of sound increases toa. 3 timesb. 6 timesc. 9 timesd. $\sqrt{3}$ times2. If pressure of a sound wave is doubled, the intensity of sound a. increases 2 timesb. decreases 2 timesd. $\sqrt{3}$ times1. (a) How does pressure amplitude change with displacement amplitude? Show that pressure wave varies with displacement wave by phase of 90°.(b) If the intensity of the song at your position is $1.4 \times 10^{-8} Wm^{-2}$ and frequency is 6kHz, what are the pressure and displacement amplitudes? [velocity of sound= $320ms^{-1}$; density of air= $2.29Kgm^{-3}$.] ($3.39 \times 10^{-3}Pa$, $2.18 \times 10^{-10} m$)(c) The displacement antinode is called as pressure node. Explain. Find the intensity of the sound wave in air whose maximum pressure variation is $3 \times 10^{-2}pa$. The density of air is $\rho = 1.20kg/m^3$ and the speed of sound is						
Pressure amplitude 1. If pressure amplitude of a sound wave is tripled, the intensity of sound increases to a. 3 times b. 6 times c. 9 times d. $\sqrt{3}$ times 2. If pressure of a sound wave is doubled, the intensity of sound a. increases 2 times b. decreases 2 times c. increases 4 times d. increases 8 times 1. (a) How does pressure amplitude change with displacement amplitude? Show that pressure wave varies with displacement wave by phase of 90°. (b) If the intensity of the song at your position is $1.4 \times 10^{-8} Wm^{-2}$ and frequency is 6kHz, what are the pressure and displacement amplitudes? [velocity of sound= $320ms^{-1}$; density of air= $2.29Kgm^{-3}$.] (3.39 × $10^{-3}Pa$, $2.18 \times 10^{-10} m$) (c) The displacement antinode is called as pressure node. Explain. Find the intensity of the sound wave in air whose maximum pressure variation is $3 \times 10^{-2}pa$, The density of air is $\rho = 1.20kg/m^3$ and the speed of sound is 340m/s.						
Pressure amplitude 1. If pressure amplitude of a sound wave is tripled, the intensity of sound increases to a. 3 times b. 6 times c. 9 times d. $\sqrt{3}$ times 2. If pressure of a sound wave is doubled, the intensity of sound a. increases 2 times b. decreases 2 times c. increases 4 times d. increases 8 times 1. (a) How does pressure amplitude change with displacement amplitude? Show that pressure wave varies with displacement wave by phase of 90°. (b) If the intensity of the song at your position is $1.4 \times 10^{-8} Wm^{-2}$ and frequency is 6kHz, what are the pressure and displacement amplitudes? [velocity of sound= $320ms^{-1}$; density of air= $2.29Kgm^{-3}$.] ($3.39 \times 10^{-3}Pa$, $2.18 \times 10^{-10} m$) (c) The displacement antinode is called as pressure node. Explain. Find the intensity of the sound wave in air whose maximum pressure variation is $3 \times 10^{-2}pa$, The density of air is $\rho = 1.20kg/m^3$ and the speed of sound is 340m/s. 2. a) What is pressure amplitude? Describe sound wave as a pressure wave and deduce on expression for the pressure amplitude.						
Pressure amplitude1. If pressure amplitude of a sound wave is tripled, the intensity of sound increases toa. 3 timesb. 6 timesc. 1f pressure of a sound wave is doubled, the intensity of sounda. increases 2 timesb. decreases 2 timesc. increases 4 timesd. increases 2 times1. (a) How does pressure amplitude change with displacement amplitude? Show that pressure wave varies with displacement wave by phase of 90°.(b) If the intensity of the song at your position is $1.4 \times 10^{-8} Wm^{-2}$ and frequency is 6kHz, what are the pressure and displacement amplitudes? [velocity of sound= $320ms^{-1}$; density of air= $2.29Kgm^{-3}$.] ($3.39 \times 10^{-3}Pa$, $2.18 \times 10^{-10} m$)(c) The displacement antinode is called as pressure node. Explain. Find the intensity of the sound wave in air whose maximum pressure variation is $3 \times 10^{-2}pa$, The density of air is $\rho = 1.20kg/m^3$ and the speed of sound is $340m/s$.2. a) What is pressure amplitude? Describe sound wave as a pressure wave and deduce an expression for the pressure amplitude.						
Pressure amplitude 1. If pressure amplitude of a sound wave is tripled, the intensity of sound increases to a. 3 times b. 6 times c. 9 times d. $\sqrt{3}$ times 2. If pressure of a sound wave is doubled, the intensity of sound a. increases 2 times b. decreases 2 times c. increases 4 times d. increases 8 times 1. (a) How does pressure amplitude change with displacement amplitude? Show that pressure wave varies with displacement wave by phase of 90°. (b) If the intensity of the song at your position is $1.4 \times 10^{-8} Wm^{-2}$ and frequency is 6kHz, what are the pressure and displacement amplitudes? [velocity of sound= $320ms^{-1}$; density of air= $2.29Kgm^{-3}$.] ($3.39 \times 10^{-3}Pa$, $2.18 \times 10^{-10} m$) (c) The displacement antinode is called as pressure node. Explain. Find the intensity of the sound wave in air whose maximum pressure variation is $3 \times 10^{-2}pa$, The density of air is $\rho = 1.20kg/m^3$ and the speed of sound is $340m/s$. 2. a) What is pressure amplitude? Describe sound wave as a pressure wave and deduce an expression for the pressure amplitude. b) i. Interpret sound wave graphically using comparison graph between displacement of the pressure unification comparison for the pressure amplitude.						

ii. Compare pressure amplitude & displacement amplitude for interpretation						
of sound wave.	Which of	them have	more effect	on intensity of so	ound?	
Explain.						

c) Water at 20°C has a bulk modulus of 2.2 x 10⁹ Pa and the speed of sound in water at this temperature is 1480 m/s. For 1000 Hz, sound waves in water at 20°C, what displacement amplitude is produced if the pressure amplitude is 3 x 10⁻² Pa. $(3.2 \times 10^{-32} \text{ m})$

	Intensity and	intensity level	
1. Phon is the un	it of		
a. frequency	b. amplitude	c. intensity	d. loudness
2. The intensity of	f a sound gets reduced	l by 20% on passing t	hrough a slab. The
reduction in intens	sity on passing through	two consecutive slabs	is
a. 50%	b. 40%	c. 36%	d. 30%
3. An infinite line	source emits waves in a	a non-absorbing mediu	ım. The intensity at
a distance R from	the source varies as:		
a. R	b.1/R	c. R ²	d.1/R ²
4. A beam of soun	d is 10 ⁶ times as intens	e as that with minimu	m audible intensity.
The intensity le	vel of the beam is		
a. 10° <i>dB</i>	b. 60 dB	c. 6 dB	d. 0.6 dB
5. The maximum t	olerable sound intensit	ty in dB is	
a. 0 dB	b. 1 dB	c. 120 dB	d. 200 dB
6. The intensity o	f sound gets reduced l	by 15% on passing the	rough a block. If it
passes through tw	o such blocks the inten	sity of the outgoing sou	ind is
a. 27%	b 37%	c. 72%	d. 82%
7. The intensity o	t sound gets reduced l	by 10% on passing the	rough a block. If it
passes through tw	o such blocks, the redu	ction in intensity of the	e outgoing sound is
a. 19%	D. 18%	C. 91%	d. 81%
8. The intensity i	evels of two waves of	same frequency in a	given medium are
20 aB ana 60 aB	5. I nen the ratio of the	r amplitude is	1 1 104
a. 1:4	D. 1: 10	c. 1: 100	
9. The reference	intensity of audibility	y is 10 W m ⁻ . 1	he sound level for
intensity 10 + W 1	<i>m</i> ² will be:	400 10	
a. 8 <i>dB</i>	b. 80 <i>dB</i>	c. 108 <i>dB</i>	d. 160 <i>aB</i>
10. The noise level	in ordinary conversation	ion is	
a. 20 dB	b. 65 dB	c. 100 dB	d. 120 dB
1. (a) What is into	ensity of sound?		
(b) Show that	intensity varies directl	y proportional to the s	quare of amplitude
of sound.			
(c) Does ampli	tude of sound decrease	with distance from the	e source? Explain.
(d) Define bel	and decibel? Write the	ir relation.	
2. (a) What do y	ou mean by intensity a	and intensity level of s	ound? Is there any
relation be	etween them?		

(b) What is the minimum value of sound intensity that normal ear can hear clearly.