	ii. Prove that $I = \frac{1}{2} \rho v a^2 \omega^2$ where the symbols have their usual meanings.	$\mathbf{a.} f' = f$	b $f' > f$	c. $f' < f$	$\mathbf{d}.f'\geq f$
	iii. Show that the intensity of sound for a given frequency is directly		frequency is indeper		
	proportional to the square of amplitude of vibration.		of waves produced	b. the speed of so	
	(b) Why does an empty vessel produce more sound than a filled one?	c. the speed of ob			source to observer
	(c) The ratio of intensities of two waves at a point is 25: 16. Calculate the ratio			re moving with same	
	of amplitude of two waves.	directions. If the actual frequency of source is f . The apparent frequency f' heard by listener is			
	(d) Explain, why is the roaring of a lion different than the sound of a mosquito?	a. $f' = f$	b $f' > f$	c. $f' < f$	$\mathbf{d}. f' \geq f$
	(e) When a jet plane is flying on elevation of 1000m the sound level on the ground			nary source of sound wit	
	is 4.0 dB. What would be the intensity level on the ground when its elevation	of the velocity of sound. The percentage change in the apparent frequency is			
	is as low as 100m? (Ans: 24 dB)	a. 5%	b. 10%	c. 20%	d. zero
	(f) At a point 20 m from a small source of sound, the intensity is 0.5 μ Wm ⁻² .			stationary observer wit	th a velocity v_s . The
	Find a value for the rate of emission (power) from the source. $(25.1 W)$			f source is f . If $v_s << 1$	
l.	A sound has an intensity of $5 \times 10^{-7} Wm^{-2}$. What is decibel sound level? What	decrease in frequen	ncy will be		
	is the bel level? $ [57 dB; 5.7 bel] $	$a.\frac{2v}{v_s f}$	b. $\frac{2v_sf}{v}$	$c.\frac{2f}{vv_s}$	$d.\frac{v}{2fv_s}$
۷.	Find the amplitude of vibration of the particles of air through which a sound		-		
	wave of intensity $2 \times 10^{-6} W/m^2$ and frequency 1 KHz is passing. Density of	8. A source of sound producing wavelength 50 cm is moving away from a stationary observer with $(1/5)^{th}$ speed of sound. Then what is the wavelength of sound			
,	air is $1.2 kg/m^3$ and speed of sound in air is 330 m/s . [$1.6 \times 10^{-8} \text{ m}$] Intensity of sound from a point source is $10^{-8} Wm^{-2}$ at a distance of $5 m$. What	received by the observer?			
٥.	will be the intensity and intensity level of sound at a distance of $20 m$ from the	a. 55 cm	b. 40 cm	c. 60 cm	d. 70 cm
	same source? [6.25 \times 10 ⁻¹⁰ Wm^{-2} ; 27.95 dB]	9. A policeman fires at a constant interval on a thief running way. If the velocity of			
4.		policemen is twice the velocity of thief, then a. The thief hears the sound at same interval b. The thief hears the sound at quicker interval			
т.	uniformly in all directions. Calculate the intensity level at distances (i) 100 m				
	and (ii) 500 m from the source. [69 dB ; 55 dB]				
5.			rs the sound at great		
	is 4 dB. What would be the intensity level on the ground when its elevation is as	d. The thief will not hear the sound of shots 10. A racing car moving towards a cliff, sounds its horn. The driver observes that the sound reflected from the cliff has a pitch one octave higher than the actual sound of the horn. If v is the velocity of sound, then the velocity of the car is			
	low as 50 m? [30 dB]				
6.	The volume level of an outdoor public address system is adjusted to $55 dB$ for				
	people 5 m away. What will be its intensity level for people at distance 45 m?		. If v is the velocity (of sound, then the veloci	ity of the car is
	[35.9 <i>dB</i>]	$a.\frac{v}{3}$	b. $\frac{1}{4}$	$\mathbf{c.} \frac{\mathbf{c}}{\sqrt{2}}$	d. $\frac{1}{2}$
7.	If the intensity of sound is doubled, by how many decibels does the sound level			0 ms ⁻¹ towards a static	
	increase? [3 dB]			f the sound reaching the	
	Doppler's effect:			quency of the echo as de	etected by the rocket
	A sound source is moving towards stationary listener with $(1/10)^{th}$ the speed of	is (Take velocity of a. 3000 Hz	b. 3500 Hz	c. 4000 Hz	d. 5000 Hz
	und. The ratio of apparent to real frequency is			tform with a speed of 20	
:	a. $\frac{11}{10}$ b. $\left(\frac{11}{10}\right)^2$ c. $\left(\frac{9}{10}\right)^2$ d. $\frac{10}{9}$			0 ms ⁻¹ . If the frequency	
	A moving source of sound passes a stationary observer with a velocity v_s . The			ncy of sound as heard by	
	locity and frequency of sound is v and f . If $v_s << v$, then the apparent decrease	the platform is	, 1	· ·	/ I &
	frequency will be	a. 600 Hz	b. 640 Hz	c. 680 Hz	d. 720 Hz

(c) Calculate the sound intensity and sound intensity level in decibel for a sound

(Ans: $5.04 \times 10^{-4} Wm^{-2}$, 87dB) 3. (a) i. Define the intensity of sound. Mention its unit & dimension.

wave travelling in air at 0°C and having a pressure amplitude of 0.656 Pa.

b. 2 $v_s f/v$

b f' > f

a. $2 v v_s f$

observer will be

a. f' = f

c. $v/2 v_s f$

c. f' < f

3. A source of sound and listener are moving along the same direction with same

velocity. If the actual frequency of source is f, the frequency f' heard by the

d. 2 $v f/v_s$

 $\mathbf{d}. \mathbf{f}' \geq \mathbf{f}$