- Newton's 2nd law of motion gives the quantitative (measurement) of force. (significance of 2nd law)
- The force is a vector quantity. It SI unit is kgm/s^2 or Newton (N). Its dimension is $[M^1L^1T^{-2}]$
- If m = 1kg and $a = 1m/s^2$ then F = 1N. Hence, 1N force is defined as the that force which produces an acceleration of $1m/s^2$ when applied on a body of mass 1kg.

• $1N = 10^5 dyne$

Questions:

- 1. A body of mass 5kg at rest is acted by a force. After 5 sec, the body covers 50m displacement. Calculate the force acting on the body.
- 2. A force of 10N in applied at 60° to above the horizontal. Find the acceleration of 5kg body which moves in horizontal direction.

Newton's 3rd law:

Statement: "To every action, there is an equal and opposite reaction". i.e. Action = -Reaction

- The action and reaction always act on *two different bodies*. Hence, they never cancel each other.
- The forces always exist in pairs. (Significance of Newton's 3rd law)
- Action-reaction pairs are of the same nature.
- This law cannot be applied to a single body. There should be an interaction between two bodies. In an interaction between two bodies in contact, the force applied by one body on the other creates a reaction force which is equal and opposite to the action.

Some Applications of Newton's 3rd law:

- While walking, a person pushes the ground in the backward direction, and the ground in return pushes the person in the forward direction, thus making him walk.
- When a bullet is fired from a gun, the gun recoils. In rocket propulsion, the burnt fuel moves downward and the rocket moves upward.
- When a man jumps from a boat, the boat moves backwards away from him. While it is difficult to walk in sand or ice. This is because we cannot push the ground sufficiently hard. As a result, the reaction force is not sufficient to help us move forward.
- A person pushes water backwards during swimming. While swimming we push the water in a backward direction whereas the reaction of water pushes the swimmer in a forward direction.

Newton's 2nd law of motion is the fundamental law of motion (Real law of motion)

Newton's 2nd law is the fundamental (basic) law of motion while the first law and third law are the special cases of the second law.

1.	<i>Newton's 1st law from 2nd law:</i> According to Newton's 2 nd law of motion,		
		$F_{net} = ma$	
	If,	$F_{net}=0,$	[No net external force]
	Then,	ma = 0	
		$\Rightarrow a = 0$	$[m \neq 0]$

This implies that if no net external force act on the body then,

- a. Either the body is at rest
- b. Or the body is in uniform motion in a straight path.

These two cases explain the first law.