2. Newton's 3rd law from 2nd law:

Consider the collision of two bodies in the absence of external force. (In the collision, one body applies to action and another gives a reaction)

Let, \vec{F}_{AB} = Force on body 'A' due to body 'B'. (Action) \vec{F}_{BA} = Force on body 'B' due to body 'A'. (Reaction)

Then, the net force acting during the collision,

$$\vec{F}_{net} = \vec{F}_{AB} + \vec{F}_{BA}$$

or, $0 = \vec{F}_{AB} + \vec{F}_{BA}$ [Net external force is absent]
or, $\vec{F}_{AB} = -\vec{F}_{BA}$; -ve sign indicated the opposite direction.

This is Newton's 3rd law of motion.

Principle of conservation of Linear Momentum:

Statement: "If no external force (net force) acts on a system, the total linear momentum of the system always remains constant".

Proof of principle of conservation of momentum using second law of motion. [For SQ]

According to Newton's second law of motion,

Force = *Rate of change of momentum*

 $F_{net} = \frac{dp}{dt}$

d٢

If F = 0, then

Integratin

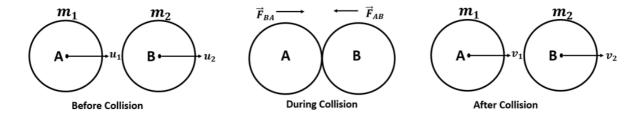
$$\frac{dp}{dt} = 0$$

or, $dp = 0$
g both the sides, $\int dp = constant$
 $\Rightarrow p = constant$

Thus, this equation verifies the principle of conservation of linear momentum.

Proof of principle of conservation of momentum using 2nd law and 3rd law of motion. [For LQ]

Consider two bodies: A and B of masses m_1 and m_2 are moving in a straight linear path with velocities u_1 and u_2 respectively with $u_1 > u_2$.



Since $u_1 > u_2$, as they will undergo collision for short time say 't', and after collision they separate from each other with velocities v_1 and v_2 respectively as shown in figure.

